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A B S T R A C T   

Classical continuum mechanics has been widely used for implementation of the material models of articular 
cartilage (AC) mainly with the aid of the finite element (FE) method, which, in many cases, considers the stress- 
free configuration as the initial configuration. On the contrary, the AC experimental tests typically begin with the 
pre-stressed state of both material and geometrical properties. Indeed, imposing the initial pre-stress onto AC 
models with the in vivo values as the initial state would result in nonphysiologically expansion of the FE mesh due 
to the soft nature of AC. This change in the model configuration can also affect the material behavior kine-
matically in the mixture models of cartilage due to the intrinsic compressibility of the tissue. Although several 
different fixed-point backward algorithms, as the most straightforward pre-stressing methods, have already been 
developed to incorporate these initial conditions into FE models iteratively, such methods focused merely on the 
geometrical parameters, and they omitted the material variations of the anisotropic mixture models of AC. To 
address this issue, we propose an efficient algorithm generalizing the backward schemes to restore stress-free 
conditions by optimizing both the involving variables, and we hypothesize that it can affect the results 
considerably. To this end, a comparative simulation was implemented on an advanced and validated multiphasic 
model by the new and conventional algorithms. The results are in support of the hypothesis, as in our illustrative 
general AC model, the material parameters experienced a maximum error of 16% comparing to the initial in vivo 
data when the older algorithm was employed, and it led to a maximum variation of 44% in the recorded stresses 
comparing to the results of the new method. We conclude that our methodology enhanced the model fidelity, and 
it is applicable in most of the existing FE solvers for future mixture studies with accurate stress distributions.   

1. Introduction 

Finite element (FE) analysis provides a numerical tool for multi-
phasic modeling of the articular cartilage (AC). It is presumed that AC is 
formed by a combination of fibril-reinforced and non-fibrillar mixture 
coupled with a charged biphasic medium (Freutel et al., 2014; Halloran 
et al., 2012; Julkunen et al., 2013; Klika et al., 2016). The electro-
chemical behavior is necessary for biomechanical simulation of AC 
constituents (Quiroga et al., 2017; Sajjadinia et al., 2019), and it can 
pre-stress the solid matrix even in the absence of external loads at the 
beginning of the analysis. As FE models are mainly based on continuum 
mechanics, where typically a stress-free condition is assumed as the 
initial condition, the AC pre-stress can expand the FE mesh of the model 

and ultimately extend the fiber bundles until it reaches equilibrium. 
Therefore, if the numerical analysis starts with the experimental 
configuration, such volume expansion will cause computational errors 
in the initial configuration getting a shape dissimilar to in vivo mea-
surements (Wang et al., 2018). Although it is occasionally possible to 
guess a stress-free configuration, which would result in the initial in vivo 
condition by a forward FE analysis, it is challenging or even impossible 
to make such speculation for heterogeneous and large-scale models. 

On the other hand, the complex constituents of cartilage are 
commonly modeled by the mixture theory (Truesdell and Toupin, 1960) 
in accordance with a relationship between the isotropic and anisotropic 
material fractions, which are functions of the geometrical parameters 
(Wilson et al., 2007). Therefore, even if the stress-free geometry of the 
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FE models was available, these parameters could be altered 
non-physiologically by the pre-stress deformation. In other words, the 
issue of implementation of the initial in vivo conditions is not limited to 
geometrical parameters, and it also has an effect on the initial values of 
the material parameters of the mixture models. 

It is, however, possible to determine the stress-free condition numerically 
or experimentally, as some methods have already been presented in the 
literature with applications in different fields of science, see, e.g., Fachinotti 
et al. (2008), Govindjee and Mihalic (1996), Huang et al. (2016) and Lu et al. 
(2007). In the context of biological pre-stressing, several techniques for 
different soft tissues have been suggested. Some of these approaches are 
based on the multiplicative split of the deformation gradient (Gee et al., 
2010; Pierce et al., 2015; Weisbecker et al., 2014), which were also used in 
tissue growth and remodeling models (Ambrosi et al., 2019; Zahn and Bal-
zani, 2016). Although these methods are robust, they may require a 
manipulation of the FE elements or the constitutive equations, which are not 
straightforward for some research groups working with commercial soft-
ware packages. Other more sophisticated methods are also available for this 
purpose, see, e.g., Alastrué et al. (2007), Lu et al. (2007) and Olsson et al. 
(2006), which are built on different approaches, such as the opening-angle 
algorithms, inverse design analysis, etc., but they can find the initial condi-
tions under very specific circumstances, such as specific constitutive or 
geometrical assumptions. Alternatively, the so-called fixed-point-based 
backward schemes can accurately find the stress-free geometry in a very 
straightforward manner, as they consider numerical models as black-box 
systems, and they perform the pre-stress algorithms by only the input and 
output geometrical values of these systems without manipulation of the 
background numerical equations (Leach et al., 2019). 

In particular, for AC analysis, recently an efficient pre-stressing al-
gorithm was proposed (Wang et al., 2018) based on the previous 
fixed-point-based backward displacement method (Bols et al., 2013). 
This algorithm was successfully applied to a patient-specific AC model, 
and while it was a step forward, their methods were completely 
geometry-based and did not take into account the important material 
variations due to the kinematic variations in the mixture models. 
Therefore, this limitation can be addressed by a new backward optimi-
zation algorithm with the capability of material optimization (MO) that 
can also optimize the stress-free states for these material parameters so 
that the FE models would start with the in vivo data after equilibrium. 

The present study proposes a backward method with the aim of 
incorporating the in vivo initial conditions that can encompass both 
the geometrical changes and the kinematic-induced constitutive var-
iations of the AC mixture models due to pre-stressing. As no modifi-
cation of the element equations is required, we consider our algorithm 
as a pragmatic implementation method, applicable in most of the 
commercial FE solvers, which we hypothesize can highly affect the 
results of the AC mixture models in comparison to the results by the 

conventional backward FE analysis. To study our hypothesis, an 
advanced multiphasic model was implemented in an unconfined 
compression simulation with and without MO. Besides, using another 
tensile test, we calibrated material models of AC before the imple-
mentation of the main simulation. 

2. Materials and methods 

2.1. Theoretical background 

We first assumed that the capital letters signify the stress-free condition, 
while the superscript REF denotes the correspondence to the initial in vivo 
(reference) condition with pre-stress. The experimental parameters in this 
study were acquired from published in vivo data used in the healthy knee 
cartilage model of the former tissue-scale study (Sajjadinia et al., 2019). 

In conventional FE codes, a forward simulation starts with the stress- 
free initial configuration with X as the material coordinates of each 
point. When the pre-stress σ0 is introduced inside an AC model, its 
structure deforms to the new configuration with x as the updated ge-
ometry. At this stage, the model would reach the equilibrium condition, 
where the boundary conditions and the solid components resist this 
internal pressure, and following that, the main simulation can start. 
Therefore, if the analysis starts with the true in vivo configuration (X =

XREF), after the pre-stress equilibrium, the main simulation will begin 
with the geometrical error of x − XREF in the initial configuration. 

In the conventional inverse problems of pre-stressing (Bols et al., 
2013; Wang et al., 2018), the initial in vivo and stress-free configurations 
were assumed to be the known and unknown parameters, and the 
aforementioned forward analysis starts with the in vivo configuration. 
Next, the stress-free configuration is revised by an update function U, 
and the forward analysis is iterated unless the maximum value of a re-
sidual function maximum(r) converges to a small number of ε, implying 
that the initial pre-stressed geometries closely match the in vivo obser-
vations (i.e., x ≈ XREF). As this method can only optimize the geomet-
rical parameters, it is a geometry-based methodology, which can be 
implemented in each node of the FE models, as summarized in Algo-
rithm 1, using the following update and residual functions 

U=XREF − x (1)  

r= ‖ x − XREF‖2 (2)  

where ‖ ‖2 is the L2 norm. This iterative procedure, however, is 
restricted to the nodal geometrical parameters, which may not be 
flawless in the mixture models. 

Algorithm 1. Implementation of the geometry-based backward algo-
rithm at each point to recover the pre-stress configuration. 
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To clarify the limitation of Algorithm 1, this study used an advanced 
validated multiphasic model (Sajjadinia et al., 2019), which was 
developed based on a number of publications (Buschmann and Grod-
zinsky, 1995; Stender et al., 2012; Taffetani et al., 2014; Wilson et al, 
2004, 2007; Wu and Herzog, 2000), and particularly, the biphasic the-
ory (Mow et al., 1980) was employed, which divides the AC components 
into the inviscid water and the (effective) solid parts. A permeability 
function then governs the interaction between both phases, and the 
Cauchy stress σ in AC is defined as 

σ=σEFF − pI (3)  

where p, σEFF, and I are the fluid (or pore) pressure, the (effective) solid 
stress, and the unit tensor, respectively. When assuming the solid part as 
a constrained mixture of the non-fibrillar matrix σMAT, representing the 
proteoglycan effect, the tensile stress in the fibrillar network σCOL, rep-
resenting the anisotropic collagen effect, and the swelling (or osmotic) 
stress σGAG due to AC fixed-charged nature by microscopic glycosami-
noglycan (GAG) chains, the solid stress can be formulated as 

σEFF =σCOL + σMAT − σGAG (4) 

with 

σCOL =
∅S

0

J
∑9

I=1

(
λIρI

C

(
E0 +EεεI)εInI ⊗nI) (

if εI > 0
)

(5)  
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(
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0

)
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(6)  

σGAG = α1

(
1
J

)α2

I (7) 

Herein, 
∑9

I=1
( ) is the summation operator for 7 secondary and 2 pri-

mary fibrils at each point, α1, α2, Gm, E0, and Eε are material constants, ⊗
and ⋅ are the dyadic and inner products, nI, εI, ρI

C, and λI denote the 
direction, the logarithmic strain, the volume fraction, and the elongation 

of the I-th fibril, respectively, while ∅S
0 and ρCOL

0 are the initial values of 
the solid ∅S and the total collagen ρCOL volume fractions, and J is the 
determinant of the deformation gradient F, which is the partial differ-
entiation of the deformed coordinates with respect to the undeformed 
coordinates, derivable by the solvers at each integration point. Some of 
the above material parameters can be updated for this anisotropic 
mixture model by their initial value and deformation of the model, i.e. 

nI =
F⋅NI

‖ F⋅NI‖2
(8)  

ϕ=
ϕ0

J
if ϕ ∈

{
∅S, ρCOL} (9) 

As the values of these parameters can vary by the change of config-
uration in Algorithm 1, if they again start with the in vivo values, the 
pre-stressed configuration will cause errors in the initial conditions of 
the main simulation afterward. The initial in vivo values for these ma-
terial parameters can be obtained from the literature. Here, the 
following experimentally-based models were used (Lipshitz et al., 1975; 
Rieppo, 2004; Shapiro et al., 2001; Wilson et al., 2007): 

∅S (REF) = 0.1 + 0.2z (10)  

ρCOL (REF) = 1.4z2 − 1.1z + 0.59 (11)  

where z is the normalized depth. Likewise, fibril bundles at the initial in 
vivo state are oriented in specific directions, as elaborated in a previous 
study (Sajjadinia et al., 2019), on the basis of experimental data (Ben-
ninghoff, 1925; Wilson et al., 2004). For illustrative purposes, the di-
rection of one of the primary fibrils, as representative of the other fibrils, 
is displayed in Fig. 1. Generally, all the in vivo data used in this study are 
based on the average experimental observations and they are, therefore, 
free of outliners. 

Finally, for the implementation of the backward optimization algo-
rithm, it was also assumed that the osmotic pressure is set to have the 
fixed value of σ0 before the initial equilibrium of the pre-stress (Wang 
et al., 2018) such that upon reaching the pre-stress equilibrium, the 
osmotic pressure is allowed to increase with the volumetric change in 
the main simulation. Obviously, the stresses in the AC components are 
initially zero, except for the osmotic part, which results in the pre-stress 

Fig. 1. Angle between the radial axis and a representative primary fibril θ at each location in the initial in vivo state (Benninghoff, 1925; Wilson et al., 2004).  

S.S. Sajjadinia et al.                                                                                                                                                                                                                            



Journal of the Mechanical Behavior of Biomedical Materials 114 (2021) 104203

4

σ0 = − α1I, obtained by substituting the initial deformation, F = I, into 
eqs. (4)–(7). 

2.2. Backward algorithm with MO 

Due to the need to incorporate the changes in the material parame-
ters, here Algorithm 1 is extended to find the stress-free state of all the 
relevant parameters, including the material variables (i.e., NI, ∅S

0, ρCOL
0 ) 

and the geometrical parameters (i.e., X). If V denotes the stress-free 
states of these optimization parameters, by performing a forward pre- 
stress analysis, it should be updated to v. Given VREF from the in vivo 
data, as the known values in the new algorithm, we chose V as the un-
known which results in v converging to VREF. The algorithm is again 
based on iteratively updating the initial values until the convergence is 
achieved based on a residual function; however, this time rather than 
merely updating the geometrical parameters, all the state variables are 
updated, see Fig. 2. 

By defining the subscripts of A and R as the subsets of anisotropic 
material parameters and the remaining isotropic or geometrical pa-
rameters, the update function for the isotropic material and the 
geometrical parameters UR is defined by 

UR =VREF
R − vR (12) 

which is clearly an extension to eq. (1), but it is an inappropriate 
definition for the anisotropic parameters, as these parameters are gov-
erned by their directional unit vectors, which are not independent of 
each other. Updating these dependent components separately is very 
challenging in large deformable bodies as they are also nonlinearly 
dependent on their exact directions in space. The most straightforward 
way to handle this issue is to calculate the updated anisotropic values in 
each iteration by an inverse FE analysis that eliminates the need to use 
the update function. On that basis, at each iteration, a FE analysis should 
be carried out for the same model but with the initial in vivo and updated 

geometries as the initial and final conditions, respectively, which can be 
imposed onto this model via the displacement boundary conditions of 
x − XREF at each node, meaning that the inverse model simulates a 
mapping of XREF ↦ x after each mapping X ↦ x in the forward analysis. 
This way, the updated values vANI can be obtained by the calculated 
deformation gradient of this inverse model. Subsequently, the updated 
residual function is evaluated for all parameters by 

r= ‖ v − VREF‖2 (13) 

Currently, several pre-stressing algorithms have been implemented 
and applied to other tissues that can encompass some of the material 
changes. Comparing to them, the major difference, beyond the consti-
tutive equations, is the relationship that updates the relevant material 
parameters in each iteration, see, e.g., Alastrué et al. (2010) or Grytz and 
Downs (2013), who used the multiplicative decomposition of the 
deformation gradient to update the state of the fiber directions. Despite 
this, the variations in the material states in this study depend also 
indirectly on the deformation gradient through eqs. (8) and (9), 
rendering this algorithm conceptually similar to them. 

In terms of implementation complexity, our MO algorithm compli-
cates further the whole iteration process, considering that it requires 
access to the values of the deformation gradient at each integration 
point. Nonetheless, we do not consider this as a limitation because even 
our material model could not have been implemented without such 
access. It can also be implemented in most of the FE solvers through 
some custom coding without much efforts (e.g., refer to Section 2.3), 
comparing to even the highly pragmatic algorithms in pre-stressing 
simulations requiring element-level manipulation of the solvers 
(Pierce et al., 2015; Weisbecker et al., 2014). The major steps of the new 
backward scheme are outlined in Algorithm 2. 

Algorithm 2. Implementation of the backward algorithm with MO at 
each point to recover the pre-stress state.  

Fig. 2. Schematic of the MO algorithm role in different states of the simulations: at first, the problem is supposed to start within the stress-free state with unknown 
state variables, including both geometrical and material parameters. Then after imposing the pre-stress, the state variables are updated to their new values, which 
should match the initial conditions of typical in vivo tests, considering that experiments usually begin with the pre-stressed state. In order to find the values at the 
stress-free state, the MO backward algorithm can be employed that iteratively updates the initial guess of the state variables to reach the initial in vivo values. Once 
they are found, the main numerical analysis can then be implemented to simulate the experimental test. 
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2.3. Abaqus implementation 

The soils consolidation theory in Abaqus (Dassault Systèmes, 2019) 
was used for solving the FE analysis by eq. (3) such that in each forward 
analysis of pre-stress in AC, the stress-free values of the material pa-
rameters of the mixture model can be implemented by a custom Fortran 
SDVINI subroutine, which assigns the initial values of the state variables 
for each integration point of the FE model, following step 0, which 
calculates the geometrical parameters of these points. Therefore, any 
material parameters can be initialized heterogeneously, and the 

calculated variables can then be passed to the Fortran UMAT subroutine, 
which was called for the implementation of the solid parts of the tissue 
within Abaqus by eq. (4) (see Fig. 3). Further information about the 
implementation of the material model and its parameters is presented in 
the article of Sajjadinia et al. (2019). 

To implement the backward optimization algorithm, a custom Py-
thon script was implemented in Abaqus, according to Algorithm 2, 
where first, two identical FE models were created based on the initial in 
vivo data for the forward and inverse analyses. Subsequently, all the in 
vivo boundary conditions were prescribed in both models, while the 
inverse model should also have the displacement boundary conditions 
on all of its nodes with the initial value of zero, showing the undeformed 

Fig. 3. Flowchart of the implementation of pre-stressing equilibrium in AC mixture models with initial conditions passed to Abaqus by a Fortran subroutine.  
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Fig. 4. Flowchart of the backward optimization with MO implemented in Abaqus by a custom Python code.  

Fig. 5. 2D FE models include an axisymmetric mesh (left) and a plane strain mesh (right).  
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condition. For implementation of the backward algorithm, the material 
parameters at each integration point and the nodal geometrical pa-
rameters, forming the state variables, can be extracted from a forward 
analysis of the pre-stress equilibrium. 

Afterward, the backward algorithm could be implemented in a loop, 
which first evaluates the errors in the state variables and then, as 
documented in Algorithm 2, the mesh of the forward model and the final 
values of the nodal boundary conditions of the inverse model are 
updated. Upon running the backward analysis, the anisotropic param-
eters can be identified by eq. (8), while the other state variables can be 
extracted from the final values of the results of the forward analysis. The 
new values of the isotropic material parameters can be identified using 
eq. (9), which then may be implemented by updating the SDVINI sub-
routine to implement another iteration of this loop with the new state 
variables. This backward algorithm continued until convergence; 
nonetheless, at some iterations, the high amount of variations in the 
state variables might lead to failures in solving the FE problems, which 
can be handled by decreasing the updates of those parameters at the 
expense of increasing the number of iterations. Fig. 4 summarizes the 
flowchart of the backward algorithm with MO in Abaqus. 

2.4. Simulations 

We first assumed that the change in the pre-stress affects mainly the 
fibrillar part of AC, which is consistent with the previous AC pre- 
stressing study of Wang et al. (2018). Consequently, a tensile test was 
simulated with and without MO using 400 8-node biquadratic 
displacement and bilinear pore pressure elements with full integration 
by assigning the velocity boundary conditions simulating a stretch of 
1.2 at 4000 sec (Fig. 5, right). For this optimization test, a least-squares 
algorithm was implemented in SciPy to fit the FE models with different 
fibrillar parameters to the experimental data (Elliott et al., 2002) via the 
experimental stress and stretch measurements. The concept of experi-
mental parameters in the pre-stressed FE studies is elaborated in the 
relevant research of Wang et al. (2018). 

To explore the importance of MO, the Algorithms 1 and 2 were 
implemented to find the starting points for an unconfined compression 
test using 1837 8-node axisymmetric quadrilateral, biquadratic 
displacement and bilinear pore pressure elements, with full integration, 
in which the nodal displacements at the symmetrical axis were confined 
in the radial direction (Fig. 5, left). Subsequently, the changes in the 
material fractions in the axis of symmetry were calculated. In addition, 
the variations in the directions of the representative primary fibrils were 
recorded. For the subsequent compression test, an AC plug with 0.5 mm 
in radius was axially compressed up to 10% strain by the velocity 
boundary conditions on the top nodes, with the magnitudes of 0.002 
sec− 1, which is followed by a relaxation step, where the velocity of the 
top nodes reduced to zero, while the stress and strain curves were 
plotted for the outer regions, which are expected to be more influenced 
by pre-stress than in the inner regions. 

Furthermore, in all of the simulations, the AC, modeled with 1 mm 
thickness, has zero pore pressure on the outer boundaries so that fluid 
can flow in or out unrestrictedly, and the nodes of the bottom surface of 
AC were confined in all directions to simulate the osteochondral 
interface. 

3. Results 

3.1. Tensile test 

A set of tensile tests were simulated with and without MO for a wide 
range of the fibrillar elasticity parameters, with the values of the former 
research of Wilson et al. (2007), used as an initial guess. Table 1 lists the 
determined values for both cases, and Fig. 6 represents the simulation 
results in comparison to experimental data (Elliott et al., 2002). Both of 
the FE models fitted similarly to the median values: At first, the recorded 
stress-strain curves demonstrate a mild nonlinearity due to the initially 
almost linear behavior of the cartilage, and the curves underestimate the 
stress in comparison to the median experimental values. Once they reach 
the middle stretch (around a value of 1.06), the response is dominated 
by the nonlinear fibrillar elasticity causing a slight overestimation of the 
stress. Despite this, the recorded responses are still within the range of 
the experimental data (Elliott et al., 2002), demonstrating that they both 
can fit well to the recorded experimental data, which is sufficient for a 
general AC model. 

3.2. Compression test 

With the calibrated material models, the backward FE simulations 
were also carried out in the confined compression test with and without 
MO, and the stress-free states were found. Both of the models converged 
well, although the model with MO required more iterations in order to 
reach convergence. 

Fig. 7 presents the contours of the angle θ between the radial axis and 
the representative primary fibril direction in each point upon reaching 
the equilibrium condition. The model with MO fitted completely to the 
in vivo data (Fig. 1), whereas the model without MO showed some 
changes in the angles ranging from 5 to 10% relative to the in vivo data in 
the periphery regions. In the axis of symmetry, however, the fibrils did 
not rotate as their elements in this axis are radially confined due to the 
model symmetry. Note that, at the right bottom corner of the AC model, 
a local change in values is observable, which can also be correlated to 
the extreme rotation of the element in that region, it may also be affected 
by numerical errors, and therefore, its variation is disregarded in this 
study. 

Fig. 8 illustrates the changes in the material volume fractions in 

Table 1 
Fitted material parameters, including the initial elasticity E0 and strain- 
dependent elasticity Eε of the fibrillar network for the different pre-stressed 
models.  

Parameter Result without MO Result with MO 

E0 (MPa)  30.21 19.51 
Eε (MPa)  234.11 230.67  

Fig. 6. Stress (in MPa) obtained from experimental data (Elliott et al., 2002) 
and from optimized FE models curve-fitted to experimental data as a function of 
stretch (− ). 
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terms of the normalized depth in the axis of symmetry of the cartilage. 
Although both models present similar trends, the model without MO 
recorded roughly between 8 and 16% variations with respect to the 
experimental data for most regions, while in the deeper zones they both 
converged to similar values. 

Next, the model underwent the compression test with and without 
MO, and the axial stress-strain curves of the effective solid components 
were extracted in the middle of each AC zone (Fig. 9), representing the 
significant changes in all AC layers, i.e. the superficial zone (SZ), the 
middle zone (MZ) and the deep zone (DZ). At the peak load, the fibrillar 
part shows a maximum variation of 44% in the stress response, where in 
MZ, the fibrillar stress increased from 0.42 to 0.71 MPa when the MO 
algorithm was employed. In SZ and DZ, these variations in the fibrillar 
stresses, due to application of the MO algorithm, were respectively 9% 
and 12%. For the other components of the solid parts, the maximum 
variation of the stress corresponds to the non-fibrillar part with around 
16% of alteration in its magnitude. 

Comparatively, MO affected less the total stress-strain curves of 
different AC zones, as displaced in Fig. 10; nonetheless, the MO effect in 
DZ is more discernible, particularly during relaxation, where approxi-
mately 12% variation in the magnitudes of the strains is observable. The 

variations in the other two zones are less than 9%. 

4. Discussion 

In the present paper, a new and efficient backward optimization al-
gorithm was proposed encompassing nodal geometrical optimization 
together with MO for FE analysis of an anisotropic and depth-dependent 
mixture model of AC consisting of fibrillar, non-fibrillar, GAG, and fluid 
constituents. Our MO method can overcome the theoretical inconsis-
tency with the in vivo and numerically pre-stressed states of the material 
parameters of the AC mixture models by incorporating the material 
variables into the convergence criteria of a previous backward algorithm 
(Bols et al., 2013; Pandolfi and Holzapfel, 2008; Wang et al., 2018), and 
implementing an inverse version of the forward model for the parame-
ters capturing anisotropy. Therefore, we hypothesized that the hetero-
geneous material properties of the AC mixture model can be altered if 
the backward FE analysis is used with MO, which can subsequently 
affect the mechanical tissue responses. 

At first, a number of curve-fitting tensile tests were simulated, 
analogous to a recent pre-stressing study (Wang et al., 2018), to deter-
mine the effect of MO algorithms on the final calibrated values of the 

Fig. 7. Contour plots of the angle θ (rad) between the radial axis and the representative primary fibril in the initial condition after equilibrium with and without MO.  

Fig. 8. Plots of volume fractions (− ) vs normalized depth (− ) of cartilage in the initial condition after equilibrium for in vivo data (Lipshitz et al., 1975; Rieppo, 2004; 
Shapiro et al., 2001; Wilson et al., 2007) together with the results of FE models with and without MO. 
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fibrillar parameters, considering that the validated constitutive equa-
tions used in this study had not been implemented with any of the 
pre-stressing methods. The results of this test show that while both 
calibrated models could respond within the range of experimental data 
(Elliott et al., 2002) (Fig. 6), the model without MO has a slightly more 
strain-dependent fibrillar elasticity but considerably greater initial 

elasticity. This can be explained by the fact that at the initial 
pre-stressing condition, most of the osmotic pressure is resisted by the 
fibrillar network (Quiroga et al., 2017), and also, considering that the 
model without MO has reduced solid and collagen fractions, according 
to eq. (9), the fibrillar elasticity should be increased to compensate for it, 
especially the initial fibrillar elasticity, which is the dominating material 

Fig. 9. Plots of stress (MPa) vs time (sec) for FE simulations of unconfined compression tests with MO (black curves) and without MO (red curves) for different AC 
zones (SZ = superficial zone; MZ = middle zone; DZ = deep zone), and for different parts of the AC effective stresses after equilibrium. 

Fig. 10. Plots of total stress (MPa) vs strain (− ) for FE simulations of unconfined compression tests with MO (black curves) and without MO (red curves) for different 
AC zones (SZ = superficial zone; MZ = middle zone; DZ = deep zone). 

S.S. Sajjadinia et al.                                                                                                                                                                                                                            



Journal of the Mechanical Behavior of Biomedical Materials 114 (2021) 104203

10

parameter at small strains. 
Next, to test the hypothesis, a multiphasic cartilage material model 

(Sajjadinia et al., 2019) was implemented in the representative uncon-
fined compression test with MO and without MO for the sake of com-
parison. When the backward model without MO was implemented, the 
errors in the fibrillar directions (Fig. 7) and the considerable errors in the 
material parameters (Fig. 8), support our hypothesis, as they can affect 
the mechanical response by eqs. (8) and (9). In addition, the previous 
study of Julkunen et al. (2008) reported that the change in the solid and 
collagen fractions can highly affect the mechanical responses, while 
keeping their trends. Therefore, these results indirectly validate the 
higher accuracy and importance of the MO algorithm. We further clarify 
the change in the mechanical responses by simulating subsequent 
relaxation tests. 

When MO was used, the calculated stresses in the relaxation test 
changed significantly in comparison to the results of the conventional 
backward algorithm (Fig. 9), which unveils the role that MO can play in 
the mechanical response of the tissue, and again supports our hypoth-
esis. However, both of the models resulted in similar trends in confor-
mity with the previous observations, where, e.g., the osmotic pressure 
contributed most to the load resistance, similar to former findings 
(Quiroga et al., 2017). In addition, the fibrillar parts started in all re-
gions with a high value of stress magnitudes and then equilibrated with 
negligible values, as observed in a previous depth-dependent study 
(Wilson et al., 2007). The recorded stress in DZ for the fibrillar network 
is greatly more than other regions, considering that osmotic pressure is 
higher in this region, and also the primary fibrils are oriented mostly 
axially and consequently contributed more to the axial load resistance 
due to initial pre-stress, whereas the fibrils in the upper regions tend to 
be aligned radially. 

In terms of the total stress-strain curves, both algorithms again led to 
similar trends across different AC zones (Fig. 10), although the results 
show a small but notable change especially in the relaxation stage, 
where the change in the volumes of the elements increased the influence 
of the errors in the volume fractions. 

Overall, the analogous trends in the results demonstrate the com-
parable fidelity in both methods, but it can still be of importance for 
some highly-personalized or accurate models, considering that in the 
future such multiphasic studies are moving towards more exact and 
realistic FE analysis of the AC model with precise image-based data of 
the diverse phases (Klika et al., 2016), in which the pre-stressing inac-
curacy might be of importance, e.g., for patient-specific studies (Linka 
et al., 2017; Meng et al., 2016; Pierce et al., 2010) or the damage models 
correlate with these stress-strain data (Eskelinen et al., 2019; Hosseini 
et al., 2014; Liu et al., 2019; Mononen et al., 2016; Stender et al., 2016). 

The present study has some limitations. Firstly, the material model 
was calibrated using a single type of tensile test in keeping with the 
validation test of a previous similar study (Wang et al., 2018) to roughly 
capture the effect of the new algorithm on the parameters. While this is 
not a major limitation, as this study was not designed to determine an 
exact AC model, we acknowledge that our general AC model can merely 
simulate the general behavior of tissues, as we have needed in the 
comparative tests. Moreover, the MO method was only tested on a 
particular healthy AC model, and its applicability in the analysis of the 
other models, such as softer degenerated cartilage samples (Robinson 
et al., 2016), is not guaranteed, because they are prone to excessive 
distortions. In this case, the MO should be updated by an algorithm that 
can eliminate the distortions (Maas et al., 2016) or can optimize the 
alterations in each iteration (Rausch et al., 2017). 

In conclusion, our backward optimization algorithm provides a new 
and pragmatic computational framework for the implementation of 
anisotropic and heterogeneous AC mixture models with the initial in vivo 
state of both material and geometrical parameters. The comparative 
study could elucidate the importance of the proposed MO method in the 
stress analysis of the AC components with pre-stress. This method, which 
is applicable in most of the FE solvers, can be implemented in future 

image-based biomechanical modeling and damage studies, where high 
accuracies in the prediction of the mechanical responses of the mixture 
models are of concern. 
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