Biomechanical modeling of soft tissue multiphysics using hybrid machine learning and finite element analysis

Seyed Shayan Sajjadinia

Faculty of Computer Science, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy

17th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 5th Conference on Imaging and Visualization

www.cmbbe-symposium.com

Seyed Shayan Sajjadinia

Faculty of Computer Science, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy

A PhD candidate with background in:

- Biomechanics
- Multiphysics modeling
- Finite element analysis
- Machine learning

AUTHORS & AFFILIATIONS

- **Seyed Shayan Sajjadinia** (Faculty of Computer Science, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy)
- Bruno Carpentieri (Faculty of Computer Science, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy)
- **Duraisamy Shriram** (Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), 487372 Singapore)
- Gerhard A. Holzapfel: (Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, 8010 Graz, Austria, and Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway)

Introduction: finite element modeling

Limitations

Expensive

Complex

Methodology: surrogate modeling

Machine learning

Input features High-fidelity target results Machine learning

Hybrid machine learning (HML)

Methodology: multi-fidelity modeling

High-fidelity model

$$\nabla \cdot (\boldsymbol{\sigma}_T) = 0$$

$$\nabla \cdot (\dot{\boldsymbol{u}} - \kappa \nabla p) = 0$$

Low-fidelity model

$$\nabla \cdot (\boldsymbol{\sigma}_{LF}) = 0$$

We use multiphysics!

Methodology: 2D models

Under shear loading

Under axial loading

Methodology: 2D models

Methodology: 3D model

Methodology: 3D model

Results and discussion: 2D model

Results and discussion: 3D model

#High-fidelity	Surrogate model			
training samples	DL-1	HML-1	DL-2	HML-2
13	0.055	0.009	0.033	0.015
26	0.047	0.034	0.049	0.011
39	0.174	0.049	0.060	0.016

Results and discussion: 3D model

Conclusions

Benefits Implementation efficiency.

Performance increase.

8 to 19 times faster.

Limitations Application of two numerical models.

Longer training of the 3D model.

Requiring tuning.

References

[1] S. S. Sajjadinia, M. Haghpanahi, and M. Razi, "Computational simulation of the multiphasic degeneration of the bone-cartilage unit during osteoarthritis via indentation and unconfined compression tests," *Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine*, vol. 233, p. 871–882, Sep 2019.

[2] A. Erdemir, "Open knee: Open source modeling and simulation in knee biomechanics," *Journal of Knee Surgery*, vol. 29, p. 107–116, Oct 2014.

Thank you for your time!

