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Abstract.  Numerical  simulation  is  widely  used  to  study  physical  systems,  although
it  can  be  computationally  too  expensive.  To  counter  this  limitation,  a  surrogate
may  be  used,  which  is  a  high-performance  model  that  replaces  the  main  numerical
model  by  using,  e.g.,  a  machine  learning  (ML)  regressor  that  is  trained  on  a
previously  generated  subset  of  possible  inputs  and  outputs  of  the  numerical  model.
In  this  context,  inspired  by  the  definition  of  the  mean  squared  error  (MSE)  metric,
we  introduce  the  pointwise  MSE  (PMSE)  metric,  which  can  give  a  better  insight
into  the  performance  of  such  ML  models  over  the  test  set,  by  focusing  on  every
point  that  forms  the  physical  system.  To  show  the  merits  of  the  metric,  we  will
create  a  dataset  of  a  physics  problem  that  will  be  used  to  train  an  ML  surrogate,
which  will  then  be  evaluated  by  the  metrics.  In  our  experiment,  the  PMSE  contour
demonstrates  how  the  model  learns  the  physics  in  different  model  regions  and,  in
particular,  the  correlation  between  the  characteristics  of  the  numerical  model  and
the  learning  progress  can  be  observed.  We  therefore  conclude  that  this  simple  and
efficient  metric  can  provide  complementary  and  potentially  interpretable  informa-
tion  regarding  the  performance  and  functionality  of  the  surrogate.
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1.  Introduction

Numerical  methods  such  as  finite  element  (FE)  methods  [1]  are  powerful  tools  to
simulate  various  physics  behavior  [2–6],  but  for  some  practical  applications,  they  may  be
computationally  prohibitive  due  to  the  high  nonlinearity  and  large  number  of  equations
involved.  This  motivates  the  use  of  a  surrogate  model,  which  is  an  efficient  model  that
can  replace  the  main  numerical  model  using  machine  learning  (ML)  or  any  other  efficient
data-driven  method  [7].  In  this  regard,  a  simple  idea,  among  many  others,  is  to  first
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generate a subset of possible inputs and outputs of the numerical model in order to
train the ML surrogate model [8], which now enables real-time simulation for several
scientific disciplines, e.g., in medicine [9–13] and in mechanical engineering [14–18].
Although this technique still requires implementation of an expensive numerical solver
to create the dataset, over time, the highly efficient surrogate can substitute it for the next
simulations.

The mean squared error (MSE) metric is often used to evaluate the performance of
such ML methods. Metrics of this type find the average of errors, by some comparison
between the predicted and target values, over all the samples’ geometrical points that
define the physical system [19, 20]. Despite their advantages, especially in ML training,
they may not show the progress in learning at each point, or in other words, they are
not pointwise in a sense that they cannot distinguish the importance of each point. If the
average pointwise errors are not considered, the overall accuracy in different regions of
the physical system cannot be shown, and then, we may lose some information about the
importance of each point in ML evaluation. To the best of the authors’ knowledge, the
advantages and feasibility of a pointwise metric in this application area of ML have not
yet been explored, and assessing them is our main contribution.

This study aims to present the pointwise MSE (PMSE) metric that efficiently
evaluates the surrogates and may elucidate the role of numerical model definition. While
related work is reviewed in Section 2, this metric is mathematically defined in Section 3.
Next, we try to show its importance with a simple experiment worked out in Section 4,
and then some final remarks are provided in Section 5. We shared our research data and
code at github.com/shayansss/pmse.

2. Related Work

Global metrics, such as the mean absolute error [11], MSE [20], coefficient of de-
termination [21], are widely used for ML training or model evaluation. Despite their
benefits, especially in simple quantitative comparison of the ML and numerical models,
they might be barely interpretable [22]. Therefore, it is a common practice to visualize
the prediction, comparing to the corresponding testing target, typically by mapping the
results onto the numerical model [23–25]. However, they may not replace the local
metrics that can enable pointwise visualization of the errors associated with all the
samples.

Several studies, e.g., [26–29], used local surrogates or pointwise metrics, e.g., using
the local maximum absolute error [27]. Although, some of these local errors, such as the
pointwise cross validation error [28], may not be necessarily reliable surrogates for the
point errors of test samples, but they still can increase the overall performance, while
with possibly higher computational costs [29]. Few studies [30–32] defined pointwise
metrics to measure and precisely visualize errors of samples, but they have not been used
to study the correlation between the numerical model and these errors. In this paper, we
propose a similar pointwise metric, but it is used only for testing to keep the training fast
while we use it to especially interpret the relationship between the numerical and ML
models.
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3. Evaluation Metrics of Geometrical Points

In a typical supervised surrogate model, the ML regressor can predict the outputs of the
numerical model extracted at N assigned points evaluated on M test samples. Denoting
by ȳm,n and ym,n the prediction and target values of the nth point of the mth sample,
respectively, the performance of the model can then be assessed as follows

SEm =
1
N

N

∑
n=1

(ȳm,n− ym,n)
2. (1)

Here, SEm is the squared error of sample m, which is averaged over the whole points.
This can again be averaged over all the test samples in order to find the MSE by

MSE =
1
M

M

∑
m=1

SEm. (2)

To propose the PMSE, we used an equation similar to Eq. (2), but this time, the average
is only calculated over the constituent points using

PMSEn =
1
M

M

∑
m=1

(ȳm,n− ym,n)
2, (3)

where PMSEn indicates the PMSE value of point n, which, together with the other errors
of the other points, allow us to visualize a contour plot of them on the physical system.
This can reveal some new interpretable information about the training performance,
considering that we can then see the accuracy of all the geometrical points. Note that
having two metrics simultaneously may not affect the computational cost of the surrogate
significantly, since, here, we use the PMSE metric only for evaluation of the trained
model, rather than training.

This metric may be applicable when the points are attached to the simulated
materials in the Euclidean space that should have similar locations at some stage,
regularly at the beginning of the numerical simulation, to which the contour can be
mapped. In particular, this condition can be realized when the metric is applied to the
mesh nodes of a typical FE simulation, where the physical variables are measured.

4. Experiment

4.1. Setup

Physics problem. We are seeking to simulate a group of contact problems on a
rectangular 2D sample (with a dimension of 20× 50 mm2) with a circular hole within
2.5 mm in radius (see Figure 1). We assign an incompressible neo-Hookean model to
the sample because it is highly used for this type of simulations. Next, we assume that
the model, fixed to the bottom, has a hard contact through a semi-circular rigid indenter
(with a radius of 10 mm) moving in both x1 and x2 directions. See this review study [33]
for more about the governing equations of these models.
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Figure 1. An example of the initial and final configurations of the numerical model. The maximum and
minimum calculated values are indicated by a color range from red (165 MPa) to blue (−2750 MPa).

Numerical simulation. The physics problem has complex nonlinear properties, making
its numerical simulation time-consuming enough to justify surrogate modeling. By FE
numerical modeling, the complex physical system is discretized into a numerical model
formed by a mesh of elements with simpler equations that subsequently approximates
the physics involved for each point in each element. Since, here, a high-level FE solver is
employed, we just need to assign different conditions of the physics problem, as stated in
the former paragraph, and then, we run the solver to obtain the simulation data on each
point, yielding contour plots of the Cauchy stress in the x2 direction, see, e.g., Figure 1
(right). These values can roughly be interpreted as the distribution of the contact effect
within the sample in the given direction.

Dataset. The input features include the movements of the indenter in the x1 direction
(l1) and in the x2 direction (l2) as well as the material parameter (C). The outputs of
the ML model are collected by rerunning the numerical simulation for a wide range
of input values sampled by the uniform distribution (U), including l1 ∼ U (−3 mm,
3 mm), l2 ∼ U (0.1 mm, 3 mm), and C ∼ U (0.001 MPa, 1000 MPa). Once the data are
normalized, 75 and 25 samples are randomly selected for the training and validation sets
(used for the ML training), respectively, and 100 samples are inserted into the test set.

Training. A feed-forward neural network with the ReLU activation function is selected,
as it is highly utilized for surrogate modeling of FE analysis [20]. While the learning rate
is sufficiently small, with a value of 10−4, to record the gradual progress of learning, in
order to keep the training still fast, it is implemented by the Adam optimizer [34]. To
speed up training even more, we reduce the number of parameters by applying only a
single hidden layer that contains one-hundredth less than the number of neurons in the
last layer. During training, the model is saved 8 times every 40 epochs for the subsequent
evaluation.

Implementation. The numerical simulation is carried out by Abaqus [35], an FE solver,
with its hybrid linear plane strain element formulation. This software is controlled by a
Python script to generate the data set by assigning the input values to the numerical model
and then iterating the simulation. As soon as the data set is created, the ML model is
trained by the Keras [36] library with the TensorFlow [37] backend. This is implemented
by Jupyter Notebook [38] on an Intel Core i5 CPU and 8 GB RAM. The evaluation
metrics are calculated on the test set using the vectorized functions in NumPy [39],
and ultimately, the visualization code is implemented using the Matplotlib [40] library
along with another Python script to visualize the PMSE in Abaqus. More implementation
details are available in the shared GitHub repository.
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4.2. Results

The model was trained successfully, and the surrogate worked efficiently, considering
that the numerical data generation took 55 min, whereas the training and evaluation of the
ML surrogate took only about 2 min. Therefore, if the future repetition of the simulation
is desired, the surrogate can guarantee real-time simulation.

The overall performance on the test set is shown in Figure 2 using the SEm and MSE
values during training. While the SEm box plot provides some additional information
about sample outliers, both estimate the overall performance without interpreting the role
of the numerical model definition in training.

Figure 2. Squared errors of each test sample (SEm in the left plot) and their mean values (MSE in the right
plot) in relation to the number of epochs.

Figure 3 shows the corresponding PMSE contours, mapped to the initial configura-
tion. In the first 40 epochs, the contour is mostly green, which means that most regions
are still partially imprecise. These snapshots could indicate the learning progress across
the points, which could be of high importance, e.g., while we needed more and more
epochs to reach high accuracy (shown in blue), the area around the circular hole was
well-trained after 160th epoch. This could be an important basis for the analysis, because
in a typical numerical simulation we can prioritize the accuracy in a certain region in
order to reduce the computational time.

Other relevant results include: (i) by halving the model geometry into the right and
left parts, due to the overall symmetry of the model, we expect similar complexity for
each part, which can gradually lead to grossly symmetrical contour errors; (ii) some small
zones near the top remained red or green in all snapshots, which could be explained by
the fact that they underwent more deformation, caused by different movements of the
contacting indenter, and consequently, the output data was more complex; (iii) looking at
the last two snapshots, some areas where the elements change from irregular to regular
rectangular shapes are not completely blue, suggesting that a more regular element shape
can improve training. All of these results demonstrate the potential functionality of the
pointwise metric to further interpret the association of the ML performance and the
numerical model.
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Figure 3. Contour plots of pointwise mean squared errors on the test set with respect to the trained model
at different epochs. The contours are mapped onto the initial configuration of the model under contact before
deformation. The color range from red to blue shows the values from 2 to 0, respectively.

For the sake of comparison, in Figure 4, we display the absolute error snapshots of
a testing sample with the highest error in the first 40 epochs. We see that these errors are
unsurprisingly larger than the PMSE values shown in Figure 3, especially on the right
side of the plots. The contours do not show the small red zone that is observable in all
PMSE snapshots, and they also show significantly less accuracy than the PMSE contours
in the elements around the circular hole, particularly at late epochs, probably because of
the large displacement boundary conditions contained in the input values. Therefore, the
proposed metric proves to be clearly more generalizable.

5. Discussion and Conclusions

This research presented the PMSE, a simple and efficient metric for evaluating ML
surrogate modeling by focusing on each point of the numerical model separately.
Our experimental results demonstrate their important role by indicating more complex
points for training that, along with our understanding of numerical simulation, could
be used to interpret the possible correlation between the numerical model and learning
progress. From this, we conclude that this metric can provide useful and complementary
information about the performance of the model.

To thoroughly examine the benefits of the proposed metric, ideally it should have
been tried on a variety of different numerical problems. However, we only experimented
it on a simplified numerical problem, which is not a major limitation for this study, as the
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Figure 4. Contour plots of absolute errors corresponding to the sample with the highest squared error at the
beginning, illustrated at different epochs. The contours are mapped onto the initial configuration of the model
under contact before deformation. The color range from red to blue shows the values from above 4 to 0,
respectively.

results obtained are sufficient to achieve our main objective, i.e., presenting preliminary
evidence about the usefulness and feasibility of the pointwise metric.

Although the new metric is derived from the definition of MSE, similar pointwise
metrics could be introduced using, e.g., the root mean squared error. We hope that such a
pointwise metric will be applied to surrogate models in different (but applicable) domains
in the future.
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