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A B S T R A C T

Biomechanical simulation enables medical researchers to study complex mechano-biological conditions,
although for soft tissue modeling, it may apply highly nonlinear multi-physics theories commonly implemented
by expensive finite element (FE) solvers. This is a significantly time-consuming process on a regular computer
and completely inefficient in urgent situations. One remedy is to first generate a dataset of the possible inputs
and outputs of the solver in order to then train an efficient machine learning (ML) model, i.e., the supervised
ML-based surrogate, replacing the expensive solver to speed up the simulation. But it still requires a large
number of expensive numerical samples. In this regard, we propose a hybrid ML (HML) method that uses a
reduced-order model defined by the simplification of the complex multi-physics equations to produce a dataset
of the low-fidelity (LF) results. The surrogate then has this efficient numerical model and an ML model that
should increase the fidelity of its outputs to the level of high-fidelity (HF) results. Based on our empirical
tests via a group of diverse training and numerical modeling conditions, the proposed method can improve
training convergence for very limited training samples. In particular, while considerable time gains comparing
to the HF numerical models are observed, training of the HML models is also significantly more efficient than
the purely ML-based surrogates. From this, we conclude that this non-destructive HML implementation may
increase the accuracy and efficiency of surrogate modeling of soft tissues with complex multi-physics properties
in small data regimes.
1. Introduction

Biomechanical simulation, especially with numerical approaches,
e.g., FE methods [1], is widely used in biomedical science to analyze
biological and biomechanical phenomena using engineering mechanics
and biophysical principles, which have now numerous applications
in, e.g., orthopedics [2–4], pathophysiology [5–7], dentistry [8–10],
etc. Simulations with soft tissue models can, however, be based on
complex and nonlinear multi-physics equations, which can be handled
numerically at the expense of high computational costs and running
times [11]. This is particularly problematic in the case of time-critical
medical applications, which can be addressed by optimized algorithms,
e.g., using GPU-based execution [12]. However, they may require spe-
cial software and hardware settings [13] that are not always clinically
available.

Alternatively, we can use the so-called surrogates, i.e., fast and pos-
sibly straightforward models that replace the expensive main models
in order to overcome the computational limitations, e.g., [14–17]. In
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particular, a surrogate can learn soft tissue behavior with the basic idea
of training on previously generated numerical results with a supervised
ML method. After training, the surrogate can then be used in place
of the expensive numerical model, allowing fast, and possibly real-
time simulations. This method of surrogate modeling is often used for
biomechanical applications, see, e.g., the simulation of prostate defor-
mation with a feed-forward neural network (FFNN) [18], analysis of the
deformation of breast and liver tissues with tree-based methods [19],
assessment of the aortic aneurysm using support vector machines [20],
and simulation of the passive cardiac mechanics with graph neural
network (GNN) models [21]. Nevertheless, despite their appealing
functionality (as discussed in detail by Phellan et al. [22]), they are
still underused since they may require the generation of expensive
numerical samples with lengthy training and tuning steps [23].

A possible solution is to incorporate physical principles and other
relevant domain-specific knowledge into the training algorithm, e.g.,
vailable online 9 June 2022
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[24–26], which may improve the training convergence with few
training samples. Despite the remarkable success of these attractive
approaches, they are still the subject of much research as they may
require craftsmanship and complex implementation considering that
they typically introduce additional constraints into the training process,
e.g., by penalizing the loss function of conventional learning algo-
rithms, and in particular they may struggle with multi-physics problems
and contact discontinuities of mechanical models [27–30]. Another
possible solution is to directly reduce the order of the numerical
model that can extract the most relevant information, which allows a
simulation with considerably fewer parameters, e.g., [31,32]. The gain
in simulation efficiency of such methods has led to a growing interest in
different approaches of model order reduction (MOR), e.g., for surgery
simulators via virtual reality [33]. But again, despite their promising
performance they can have comparatively non-trivial implementation
methods [34].

In this regard, the multi-fidelity MOR approaches can serve the same
purpose as the hybrid methods mentioned above, but with a potentially
non-destructive implementation approach. A common multi-fidelity
approach is to use an LF model instead of the HF model, while an ML
model is used to increase the accuracy of the generated LF results [35].
Such surrogate models have already been used in various application
areas with different LF modeling techniques, see, e.g., [36–38]. But to
the best of our knowledge, these methods have not been implemented
through a technique of LF modeling based on the multi-physics models
of soft tissues, particularly within the biomechanical context of this
study.

This paper proposes a new HML framework that unifies FE methods
with traditional supervised surrogates to effectively simulate complex
soft tissue models in a straightforward way. It is based on an LF
numerical component that only takes into account the approximate and
overall behavior of the modeled tissue by simplifying the multi-physics
constitutive (material) equations. Then, the accuracy of the generated
LF results, via an ML model, increases to reach the HF accuracy of the
expensive main model. The proposed multi-fidelity technique can be
implemented by any commercially available numerical solver since it
does not require low-level access to the constitutive or element code.

In short, our contributions are as follows: (i) a new multi-fidelity
approach with a novel and straightforward LF modeling technique is
developed to speed up the main numerical simulation with a few HF
training samples; (ii) the feasibility of this HML method for surrogate
modeling of soft tissue biomechanics is empirically investigated and
compared to its baselines (i.e., customized GNN and FFNN surrogates)
at different scales to determine possible improvements in ML training
convergence and runtimes of numerical data generation.

2. Materials and methods

2.1. FE concept

FE schemes can solve differential equations by approximating the
solution using piece-wise polynomials with values at specific points,
i.e., integration points and nodal points. The classical FE implementa-
tion of linear systems follows the following steps [1]:

(i) Discretization of the model domain (e.g., subdivision of the
materials in Euclidean space into a group of elements, i.e., FEs).

(ii) Approximating the solution parameters in all elements using
interpolation functions.

(iii) Creation of a local stiffness matrix, e.g., using the Galerkin
method, in order to find a linear relationship between the un-
known and known values.

(iv) Assembling the stiffness matrices into a unique global stiffness
matrix to define a linear system of equations.
2

(v) Solving the linear equations.
In practice, the FE methods may also require implementation of dif-
ferent iterative algorithms, e.g., for linearization, which may cause the
HF multi-physics models to become extremely expensive, and therefore
surrogate models can be useful.

For further clarification, an FE model is illustrated in Fig. 1. Typi-
cally, each model may have initial, boundary, and regional conditions,
and they may be influenced by applied loads (or other effects on the
model). These constraints are systematically added to the governing
equations.

2.2. HML modeling

In this paper, the term ML, unless is not used in the context of the
hybrid implementation, refers to the traditional ML-based surrogates, as
shown in Fig. 2(a). For such a supervised model, an FE model first gen-
erates some informative training samples with different results at each
(nodal or integration) point using the multi-physics model, as explained
in the previous section. While these HF results can be viewed as the
target ML vector, the input feature vector can encompass the boundary
conditions, constitutive behavior, etc. In this way, the surrogate can
then perform new efficient simulations, which are defined by changing
the values of its inputs.

For our HML framework, we first select an LF model, which is
formed by simplifying the multi-physics equations, as explained in the
next section. This numerical part of reduced order, which provides
efficiently a rough estimate of the tissue biomechanics, is then inserted
before an ML part, which only focuses on improving the outcomes of
the LF results to the level of HF results. In other words, the input
features of the ML part are the components of a vector that contains
the outputs computed by the LF model, as shown in Fig. 2(b).

Although this modeling method offers great flexibility in the se-
lection of the LF model, it also requires the creation of two training
datasets with different numerical methods. However, this is not a
major limitation, considering that the LF model is supposed to be a
simplified and faster version of the HF model with a straightforward
implementation. Besides, we will empirically show that it may need,
in aggregate, fewer training samples (to reach the same accuracy) and
may even have faster training convergence, reducing the commonly
high computational cost of the training and data generation.

2.3. MOR by simplifying multi-physics equations

The governing equations of the biomechanical systems are defined
to satisfy basic equations of physical processes. In particular, the con-
stitutive equations may correlate the stress and strain values, which
can be roughly interpreted as load distributions or relative deforma-
tion effects. As a representative example, an HF multi-physics model
is defined by biphasic equations, which describe the material as a
combination of a fluid phase and an effective solid phase by [39,40]

∇ ⋅
(

𝝈T
)

= 0, (1)

∇ ⋅ (�̇� − 𝜅∇𝑝) = 0, (2)

where 𝑝 is the fluid pressure, 𝝈T is the total stress, ∇ is the spatial
ivergence operator, �̇� = d𝒖∕d𝑡 is the velocity of the solid phase, 𝑡 is the

time, and 𝜅 is the permeability (which implies the interactions between
the phases). Alternatively, such a complex multi-physics model may be
approximated by an LF model, e.g., via a monophasic model that cannot
simulate the contribution of each phase but rather the overall responses
using the LF stress 𝝈LF that approximates 𝝈T using

∇ ⋅
(

𝝈LF
)

= 0. (3)

Note that these equations have been widely used for biomechanical
simulations of soft tissues. However, combinations of other similar

equations can be applied depending on the definition of the physics
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Fig. 1. Typical components of a finite element model.
Fig. 2. Scheme of a typical machine learning surrogate (a) and its multi-fidelity implementation (b). Abbreviation: HML = hybrid machine learning.
problem. In particular, FE solvers may utilize the classical consolidation
theories to approximate the Eqs. (1) and (2). In addition, especially in
small-scale studies, multiphasic models may be used to simulate the
effects of other phases; see this survey [11] for more details on the
relationships between these equations and their interpretations.

Eq. (3), which governs the LF model, although comparing to the
Eqs. (1) and (2) has less accuracy, but it may also work more efficiently
because it deals with fewer parameters and may not use an integration
procedure with small increments that calculates the contribution of the
fluid phase. In our simulation tests, in the next section, we considered
two LF models of a similar type.

2.4. Simulation tests

In this section we design two physics problems for the numerical
generation of the datasets using the FE methods in Abaqus [41]. The
ML models are then implemented and analyzed by the established
Python libraries [42–46]. The simulations are defined based on typical
two-dimensional (2D) and three-dimensional (3D) soft tissue tests that
might be used for applications that require iterative biomechanical
simulation.

2.4.1. Model problems
The small-scale physics problem includes 2D loading tests on an

artificial soft tissue, as illustrated in Fig. 3 (left). Here, a rectangular
sample with dimensions 0.3×1.0mm2 was modeled using the following
HF multi-physics equations for the 2D total stress [47–49]

𝝈 = 𝝈 − 𝛥𝝅, (4)
3

T(2D) HE(2D)
where 𝛥𝝅 is the commonly simulated osmotic pressure (induced by the
electrochemical nature of the tissue), and 𝝈HE(2D) refers to the selected
hyperelastic tissue response (modeling the nonlinear elasticity in the
tissue). This constitutive behavior was extracted from our previous
study [50], but now we disregarded the fibrillar and fluid contributions
to further speed up the HF simulation. However, due to the pre-stress
induced by the osmotic pressure, some of the initial states may not
initiate correctly (e.g., the initial geometry may expand before the
main simulation, resulting in an incorrect initial shape). Accordingly,
a pre-stressing algorithm must be performed to correctly initiate the
numerical simulation, and the LF model is simply defined by ignoring
the pre-stressing algorithm.

Given the importance of out-of-distribution sampling [51,52] and
given the simplicity of the small-scale modeling problem, we also assess
the generalizability of the model using another 2D model, shown in
Fig. 3 (right), where the loads are applied at different locations, and
the model has also a different shape (i.e., a 0.9 × 0.9mm2 sample with
a circular hole of 0.2 mm radius in the center).

On the other hand, the 3D simulations are carried out on a human
knee cartilage model using another multi-physics model, similar to the
representative example described in Section 2.3, in order to determine
the effects of different body weight values on a cartilage substructure
(see Fig. 4), as a typical large-scale test. For this, a 3D total stress
equation is employed as follows [47,48]

𝝈T(3D) = 𝝈HE(3D) − 𝑝𝑰 , (5)

where 𝝈HE(3D) is the chosen 3D hyperelastic equation and 𝑰 denotes
the identity tensor. A simpler monophasic model for the LF modeling
is also defined, this time by neglecting the fluid contribution 𝑝.
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Fig. 3. Different types of small-scale numerical samples used for surrogate modeling.
Fig. 4. Large-scale numerical modeling of a human knee and the cartilage substructure used for surrogate modeling.
2.4.2. Numerical implementation
Eq. (1) is implemented for both of the 2D LF and HF models using

the following common constitutive equations [7,50,53–56]:

𝛥𝝅 = 𝛼1
( 1
det 𝑭

)𝛼2
𝑰 , (6)

𝝈HE(2D) = ∅S0
0.61𝐺𝑚

𝐽

[

− ln 𝐽
6

(

3∅S0
𝐽 ln 𝐽

(𝐽 − ∅S0 )
2
− 1 − 3

𝐽 + ∅S0
𝐽 − ∅S0

)

𝑰

+
(

𝑭𝑭 T − 𝐽 2∕3𝑰
)

]

, (7)

where ∅S0 = 0.15 is the initial solid volume fraction (and since the
fluid phase is neglected, it acts here as the elastic material parameter
that determines the compressibility of the tissue), 𝛼2 = 3.22 is another
material constant, 𝛼1 is a material parameter that also controls the pre-
stress in the tissue, considered as an input value of the surrogate model,
and 𝐽 is the determinant of the deformation gradient 𝑭 correlated to
the deformation field 𝒖 via [57]

𝑭 = 𝑰 + ∇𝒖. (8)

In these simulations, the bottom of the tissue is fully constrained,
and the top is subject to displacement boundary conditions. Results
4

are calculated using three-node linear plane strain triangular element
formulations in Abaqus. Also, as already mentioned, the HF models are
specifically initiated by a pre-stressing algorithm to get accurate results.
In short, the chosen pre-stressing scheme checks iteratively the updated
states of the model (including the geometry and the updated material
states) induced by the initial osmotic pressure, unless it reaches the
experimentally observed initial states. This is implemented using a
custom Fortran user material subroutine and an inverse FE method, as
explained in our previous study [50].

Also in the 3D HF simulations, the interaction of the fluid and solid
phases of the articular cartilage substructures is approximated by the
Biot’s theory in Abaqus, with the fluid phase being an inviscid water
phase with the same permeability values used in previous studies for
the middle zone of the cartilage model [7,58]. The solid phase is a
nearly incompressible neo-Hookean model, i.e. [57,59]

𝝈HE(3D) =
2
𝐽
𝑭 𝜕𝛹
𝜕𝑪

𝑭 T, 𝛹 = 𝐶10(𝐼1 − 3) + 1
𝐷1

(𝐽 − 1)2, (9)

where 𝐶10 = 2.48MPa and 𝐷1 = 0.59MPa−1 are material constants,
𝛹 is the corresponding strain–energy function, and 𝑪 = 𝑭 T𝑭 is the
right Cauchy–Green tensor defining 𝐼1 as the first invariant of its
deviatoric part. The LF models are then simply assumed to be the same
as the solid hyperelastic part. The constitutive equations of the other
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materials in the knee come from the former knee joint study [60], and
the knee geometry is taken from the Open Knee Project [61] using
magnetic resonance imaging of a cadaveric specimen from a 70-year-
old woman. In addition, we use the eight-node 3D brick elements with
and without the pore pressure formulations for the HF and LF articular
cartilage models, respectively, while the bones use the rigid elements,
and the other knee substructures are implemented by the eight-node
3D linear brick element formulation. The ligament–bone and cartilage–
bone surfaces are bound, and the fluid can flow into or out of the
cartilage surfaces freely. Ultimately, body weight is applied through the
femur with a zero flexion–extension movement while the tibia is fully
constrained.

Given the complexity of the numerical models, even if they are
simplified, readers are encouraged to read the cited studies or the
GitHub repository of this study for more details.

2.4.3. Datasets and evaluation
The datasets of the inputs and outputs of the 2D models contain 20

in-distribution samples, where the inputs are given by the continuous
distribution (𝑈), including two displacement boundary conditions from
𝑈(−0.1mm, 0.1 mm) and a material parameter 𝛼1 from 𝑈(0.005,
0.010 MPa). To the input values we also add very small noises at each
node to make the model more generalizable, and therefore the vector
of the noisy initial coordinates of each node is considered as another
input. The noise affects both the initial values and all the outputs as
applied directly in the numerical models. The LF and HF outputs are
the numerically calculated deformation and total stress values at each
node in the LF and HF simulations, respectively. Likewise, 10 more
samples are generated by the in-distribution numerical samples (with
different input values) that make up the validation set used for the
evaluation of the trained model. We also define a test set of 10 samples
(taking into account the limited samples available) with again different
input values, but now we use the out-of-distribution numerical model
to assess the surrogate generalizability.

A total of 100 samples are created for the 3D surrogate modeling.
The input to the HF models consists of the weight load, from 𝑈(−900N,
−400N), and the outputs are the calculated normal stress and strain
values at each nodal point (extrapolated from the integration points),
while the LF outputs are the nodal deformation field. The dataset is
shuffled and divided into the validation, training, and test sets while
we set the validation size to a third size of the training set, and the
remaining samples form the test set. In the results we specify the
exact number of training samples, which should be very small, since
generating such data is expensive and in most cases limited.

Note that most of the results of the 2D samples are recorded in
a similar range from 10−1 to 10−3 (in terms of their units and their
absolute values). Therefore, the unscaled mean squared error (MSE)
metric based on all nodal outputs of each evaluation sample is used
for evaluation. In contrary, for the 3D surrogates, since the inputs and
outputs have very different scales, they are all normalized separately
based on the training samples to aid in training and evaluation. While
this scaling provides a fair comparison between different output types,
the MSE metric can give very misleading results (since it may average
the outlier nodes with the other scaled nodal outputs), hence the
pointwise MSE (PMSE) metric is used, since it averages these scaled
nodal outputs at each node separately. The exact equations of the
MSE and PMSE metrics are explained and compared in our previous
study [62].

2.4.4. Training
The 2D surrogate was developed based on the open-source Mesh-

GraphNets framework [63], a GNN architecture consisting of a set of
connected FFNNs divided into three subsets of the encoder, processor,
and decoder [64,65]. In this way, the model is trained on each node and
its corresponding edges, hopefully to better learn the local behavior,
5

in particular by transferring geometrical data to the bidirectional edge
sets, allowing for spatial equivariance and more generalizable results.
In short, the core GNN model first encodes the input features of the
node and edge sets into their latent vectors to be then processed
by identical and sequential message-passing blocks, as suggested by
Sanchez-Gonzalez et al. [66]. The outputs of the latent vectors are also
reinforced by the residual connections [65], and the final latent vectors
are decoded into the desired outputs of the surrogate models.

Here we modify the original MeshGraphNets algorithm by disabling
the domain-specific settings, such as the separate world and mesh edges
definitions (since no mechanical contact is defined in the 2D simula-
tions). Most importantly, their training noise strategy is not applicable
to the selected output types of this study and is therefore replaced by
our noise generation method described in Section 2.4.3. Also, we edited
the pre-processing functions and the trained model evaluators since
they were developed for dynamic systems with different snapshots of
the results, while all the simulations of this study consider only the end
conditions as output results. Using this customized model, the ML and
HML implementations are empirically compared.

Accordingly, we define 2D model 1 in such a way that it can be
efficiently trained with different numbers of input samples, using the
𝐿2 loss of the nodal results with a maximum number of 1 000 steps
and a learning rate of 10−3 while the first 100 steps are reserved for
initiating the online normalizer [65]. Each of the constituting FFNNs
has three hidden layers while we insert three message-passing blocks
with a latent size of 40, which corresponds to the output size of the
encoders and the input size of the decoders. The edge sets are generated
by the vectors of relative distances of connected nodes and their norms;
thus, the input shape of their encoders is of size 3. For the HML
model, the outputs of the LF model with respect to each node in the
sample yields the corresponding node set; hence the input size of its
encoder is 6. This size for the ML model is 5 since each graph’s node is
formed by the input values of the numerical model (sent to each node),
excluding the geometrical features, but containing also a one-hot vector
identifying the fully constrained nodes. The output size of the decoders
of all surrogates agrees with the vector of the HF prediction (i.e., 6).
While the batch size is set equal to the number of all nodes of each in-
distribution sample (i.e., 816), the other hyperparameters are the same
as the original code.

We also empirically compare the 3D models trained by commonly
used FFNNs [22]. To ensure fast convergence, the Adam optimizer [67]
is used while keeping the numbers of neurons and layers small. After
manually testing various values of the hyperparameters for surrogate
modeling with efficient training, 3D model 1 is defined with four
hidden layers each with 940 units with the ReLU activation func-
tions [68,69] followed by a normalization layer [70], and the output
dimension is equal to the total number of nodal results in each HF
sample (i.e., 94 032). While the input dimension for the ML model is 1,
for the ML part of the HML model, this size is set to the total number of
nodal results in each LF sample (i.e., 8 364). The test is implemented on
only a few training samples with a learning rate of 10−4 and the other
training settings are set to the library defaults.

Additionally, in the next section, more models are defined and
trained to investigate the effects of the hyperparameters, and the
numbers of training samples.

3. Results and discussion

The simulation tests were carried out by different LF and HF models
on an Intel Core i5 CPU and 8 GB RAM. Runtime reductions, shown
in Fig. 5 (and detailed in Table S1 in the Supplementary material),
can justify the use of LF models instead of the HF training samples.
Changing the rate of applied loading of the 3D simulation resulted in
more diverse runtimes. In practice, however, the difference could be
even more significant since the HF simulations are simplified here to
speed up surrogate modeling.
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Fig. 5. Violin plot [71] of the relative runtime decrease of high-fidelity simulations in
relation to the corresponding low-fidelity simulations. The data is measured by dividing
the runtime decreases by the corresponding runtimes of the low-fidelity simulations.

We have disregarded the ML inference runtimes, since they were
real-time and most of the computational costs of such surrogates were
then caused by numerical data generation. In the next two subsections
we compare HML and ML surrogates for different simulations to verify
the advantages of the HML models with limited HF samples. Having
two independent multi-physics tests with different surrogate modeling
strategies allowed us to evaluate the functionality of the models with
different training conditions. We end this section with a discussion of
the limitations of the proposed method.

3.1. 2D simulation

Fig. 6 shows the MSE evaluation values for both the in-distribution
and out-of-distribution groups of 2D samples. The datasets are in-
tentionally kept small and not pre-processed by any data curation
technique [72], because in practical cases of soft tissue modeling such
datasets may be too small for any exclusion of numerical samples [73].
Under these circumstances, the HML models have significantly out-
performed their ML counterparts, as most of the recorded errors are
around 10−4 or less, with the exception for the error of the HML model
with four training samples (but even this error is smaller than all the
computed errors of the ML models). We also repeated the experiment
with an alternative model (i.e., 2D model 2) with less efficient but more
training parameters, adding three more message-passing steps as the
key hyperparameter [63] while considering that the learning rate is
reduced to 10−4, the model is trained with eight times more training
steps. The results are not changed considerably, demonstrating that the
HML models are again more precise and generalizable.

Besides, because the HML model works by mapping the input
features into another feature representation for a subsequent data-
driven part, it can be compared to feature-based transfer learning
approaches, in which the source features are transformed into a new
feature representation to transfer some of the learned knowledge of
another domain [74]; but instead of relying on the feature transfor-
mation strategies commonly used in data-driven models, e.g., [75–77],
here, an LF physics-based model transforms the input features into
more informative features. Such an analogy to transfer learning can
explain the reasons for the observed performance improvement of the
HML implementation on these efficient learning methods and limited
training data.

In order to also examine the influence of the accuracy of the LF
modeling on the HML modeling, we reimplemented the 2D tests via
the same hybrid algorithm, but this time by entering the HF results
6

(instead of the LF results). As shown in Table S2 in the Supplementary
material, this change resulted in relatively similar errors, since our
hybrid model had already been well-trained with the LF inputs (despite
the stochastic nature of the training algorithm). This might prove that
the inaccuracy in the LF modeling, which has also been documented in
the other relevant studies [50,78,79], did not prevent it from extracting
informative data to be transferred to the downstream ML component.

3.2. 3D Simulation

Fig. 7 shows the recorded MSE loss values during training (whereas
the converged values are also compared in Table S3 in the Supple-
mentary material) and reveals that 3D model 1 with the HML im-
plementation could outperform its ML version. 3D model 2, trained
with the same number of samples (i.e., three training samples and a
single validation sample for regularization) but with ELU [80] as the
activation function, had non-significant impact on the results, and the
HML surrogate still recorded minor errors. This is especially important
as only 100 epochs were used, which makes training for surrogate
modeling very fast and efficient. To further investigate the effects of
the hybrid implementation, 3D model 3 was defined again on the
same numbers of training and validation samples, where we increased
and decreased, respectively, the number of epochs and neurons (in
the hidden layers) by an order of magnitude, and we used the ReLU
activation function and the early stopping hyperparameter of 100. In
this way, by reducing the number of training parameters and the
learning rate, we still kept training efficient over such a high number
of epochs. Although these changes had a negative effect on the HML
model (due to a jump in the loss of validation after about 30 epochs),
it still worked better than the ML surrogate.

For the last model, the numbers of training and validation samples
tripled while we used the hyperparameters similar to 3D model 1,
but with a maximum of 1 000 training epochs and the same early
stopping hyperparameter of 3D model 3. This made 3D model 4 consid-
erably more expensive, since with more data, parameters and training
epochs, the training and the numerical data generation became very
time-consuming. The results show that the ML and HML models gave
relatively similar converged losses, but still the HML surrogate con-
verged much faster since it took about 10 epochs to record a validation
loss value of 0.1, i.e. about 75 times less than the number of epochs
that the ML surrogate required. Taken together, these results show that
the HML method can improve both convergence and performance.

In order to clarify the significance of the observed differences in
performance, Fig. 8 compares the PMSE contours that were mapped
for the above models on the reference configuration of the articular
cartilage substructure. 3D models 1 to 3 with the ML implementation
worked poorly in all points, while their HML versions had a signif-
icantly high level of accuracy with only few outliers in pointwise
errors (recognizable by small red zones). 3D model 4 showed a similar
accuracy, with a negligible difference with the accuracy of the HML
surrogate. However, it seems that this inefficient model recorded more
pointwise outliers and therefore other more efficient HML models could
be preferred, which in turn shows the advantages of HML surrogate
modeling, especially for very small data regime.

3.3. Limitations and future work

This study has several limitations to report. First, the HF numerical
models were simplified in order to obtain the datasets efficiently; but
this is not a significant limitation, as the simulations were designed to
efficiently demonstrate the importance of the HML method in relevant
biomechanical simulations and are not used as validated models with a
proven clinical application. Second, in our empirical tests we assumed
that the training stages should not be considerably more expensive than
the numerical data generation to motivate the use of these surrogates,
and therefore we avoided expensive surrogate modeling settings. Al-
though this might limit our results to our modeling conditions, such
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Fig. 6. Evaluation errors on validation and test sets in relation to the number of training samples in two-dimensional simulations. Abbreviations: MSE = mean squared error; ML
= machine learning; HML = hybrid machine learning.
Fig. 7. Recorded loss values versus number of epochs for surrogates of three-dimensional simulations. Note that some models converged earlier due to early stopping regularization.
Abbreviations: ML = machine learning; HML = hybrid machine learning.
assumptions are usually inevitable for surrogate models implemented
on regular computers.

Our experiments included some (but typical) types of the biome-
chanical simulations to evaluate the role our hybrid method can play.
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Admittedly, if more different types of simulations had been used, we
would have obtained more generalizable results. However, these HF
simulations may have non-trivial implementations with private datasets
and are therefore left to the future.
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Fig. 8. Contours of the pointwise mean squared error for all three-dimensional surrogate models with pure machine learning and hybrid implementations. Abbreviations: ML =
machine learning; HML = hybrid machine learning, PMSE = pointwise mean squared error.
4. Conclusions

This study presented an HML method for multi-fidelity surrogate
modeling of the biomechanical and FE simulation of soft tissues. Since
the LF model is only formed by simplifying the multi-physics equa-
tions, such an MOR technique is comparatively straightforward and
non-destructive. Through extensive empirical comparisons, we also
conclude that this hybrid paradigm can improve training convergence
and increase the performance of surrogate modeling with an extremely
limited number of training samples, which can address the limitation
of current ML-based surrogates, which typically need a large number
of expensive HF samples.
8
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