LARGE-SCALE FINITE ELEMENT MODELING OF PRE-STRESS IN ARTICULAR CARTILAGE

CMBBE 2023 ID: 275 (D88)

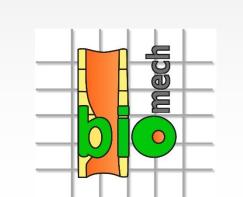
Seyed Shayan Sajjadinia¹ ssajjadinia@unibz.it

Bruno Carpentieri¹

bruno.carpentieri@unibz.it

Gerhard A. Holzapfel^{2,3}

holzapfel@tugraz.at


no

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan ¹ Faculty of Engineering, Free University of Bozen-Bolzano, Bozen-Bolzano, 39100, Italy ² Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2, Graz, 8010, Austria

³ Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

5.333e-02

- 2.667e-02

Introduction

Background:

- Analysis of articular cartilage (AC) through *in silico* methods is crucial due to the prevalence of osteoarthritis [1].
- Multiphysics models can achieve high-fidelity AC simulation by computing osmotic pressure.
- Osmotic pressure leads to pre-stressing in the model, which can be handled using a pre-stressing algorithm (PSA).

Motivations:

- Our previous research [2] presented a PSA with separate geometrical and material optimizations, which might be too expensive for a large-scale simulation.
- Biomechanical data recorded with respect to the known prestressed state may still lead to theoretical inconsistencies.

Aims:

- To develop an automatic pipeline for large-scale pre-stressing using a unified optimizer.
- To perform a pre-stressing analysis on a knee model.

Methodology

Modeling:

• AC components contribute to the load resistance by [2-5]:

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}^{COL} - \boldsymbol{\sigma}^{MAT} + \boldsymbol{\sigma}^{GAG} - p\mathbf{I}$$
 total stress fibrillar stress non-fibrillar stress osmotic pressure fluid pressure

$$\boldsymbol{\sigma}^{COL} = \frac{1}{J} \emptyset_0^S \sum_{I=1}^9 \left(\rho_C^I \big(E_0 + E_\varepsilon \varepsilon^I \big) \varepsilon^I \lambda^I \mathbf{n}^I \otimes \mathbf{n}^I \right) \quad (\text{if } \varepsilon^I > 0)$$
 volumetric part of the deformation gradient \mathbf{F} material parameters I^{th} fibrillar direction strain

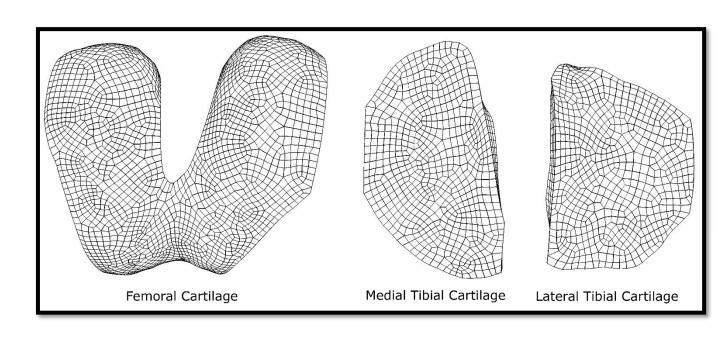
$$\boldsymbol{\sigma}^{MAT} = G_m (1 - \rho_0^{COL}) \frac{\phi_0^S}{J} \left[-\frac{\ln J}{6} \left(3\phi_0^S \frac{J \ln J}{\left(J - \phi_0^S \right)^2} - 1 - 3\frac{J + \phi_0^S}{J - \phi_0^S} \right) \mathbf{I} \right]$$
material parameters
$$+ (\mathbf{F} \cdot \mathbf{F}^T - J^{2/3} \mathbf{I})$$

$$\mathbf{\sigma}^{GAG} = \alpha_1 \begin{pmatrix} 1 \\ J \end{pmatrix} \downarrow^{\alpha_2} \mathbf{I} \quad \Longrightarrow \quad \mathbf{\sigma}_0 = -\alpha_1 \mathbf{I}$$

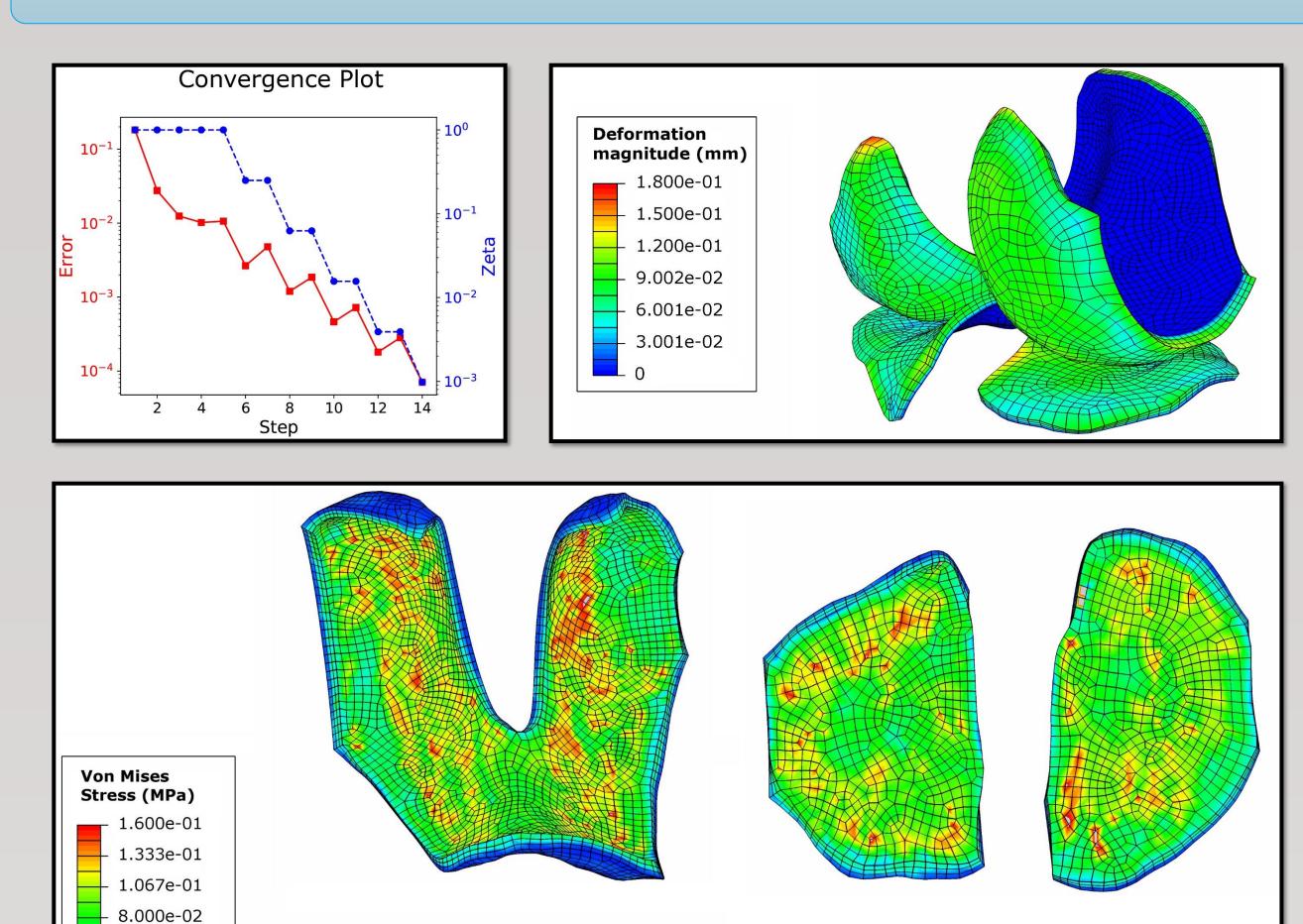
$$\downarrow^{\text{material parameters}} \quad \text{pre-stressing}$$

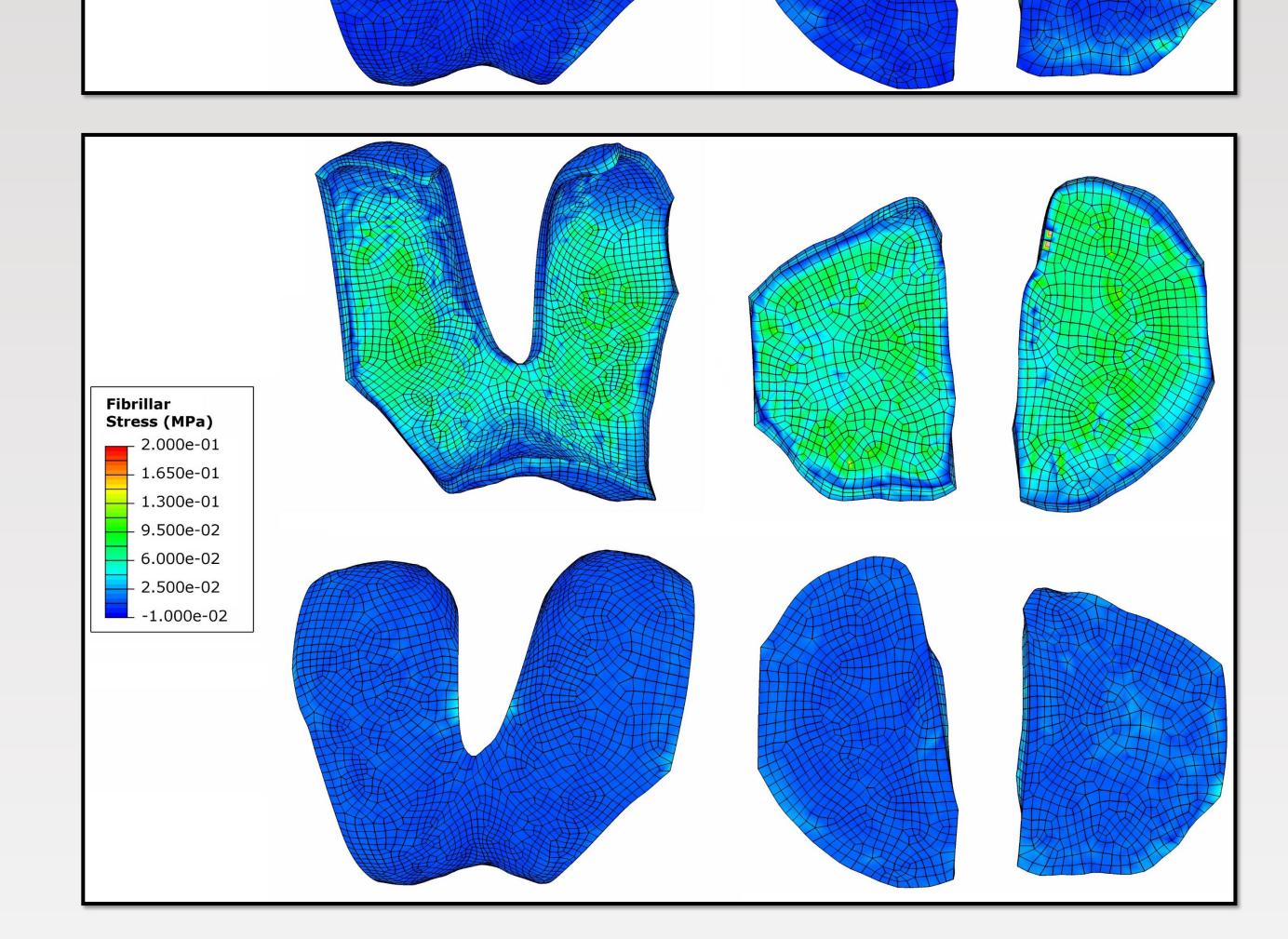
- Material parameters are determined using the experimentally observed microstructure of the pre-stressed knee, as indicated by the normalized depth (ND) and split lines on the AC surfaces.
- ND values are calculated by an algorithm of the nearest neighbor searching [6] to then approximate the pointwise values of the reference state \mathbf{V}^{REF} , set as the PSA target.
- The optimizer updates the geometrical and material state ${\bf v}$ (including the nodal coordinate ${\bf x}$) to reach the target state:

$$\mathbf{v}_{t-1} \xrightarrow{\text{forward}} \mathbf{x}_t \xrightarrow{\text{backward}} \mathbf{v}_t$$


With $\mathbf{v}_0 \coloneqq \mathbf{V}^{\mathrm{REF}}$ and the residual function $r = \|\mathbf{v}_t - \mathbf{v}_{t-1}\|_{\infty}$, updating finite element (FE) mesh with the zeta parameter ζ using the forward analysis:

$$\mathbf{x}_t \coloneqq \zeta(\mathbf{x}_{t-1} - \mathbf{x}_t)$$


And the backward analysis starts with $\mathbf{V}^{\mathrm{REF}}$ to reach \mathbf{x}_t


Simulation:

- The FE model is extracted from the Open Knee project [7].
- The pre-stressing effects are recorded with an emphasis on the deep and contacting layers of the tibiofemoral joint, as shown on the right.

Results

Discussion and conclusions

- The PSA algorithm was found to be highly efficient, taking around 3 hours to complete, but this could be reduced to an hour with a rough error of 0.001 mm.
- The deformation results were consistent with expectations, with the maximum effect observed on the contacting surfaces.
- Our findings indicate that total and fibrillar stresses on the contacting surfaces are negligible and may not be affected by pre-stressing. However, the deeper zones may not follow the same pattern.
- The PSA algorithm needed minimal human intervention, only for adjusting the value of zeta.
- The results can be indirectly validated by comparing them to the previous study [8].

References

- [1] Heijink, A. et al. Knee Surgery, Sport. Traumatol. Arthrosc. 20, 423–435 (2012).
- [2] Sajjadinia, S. S. et al. J. Mech. Behav. Biomed. Mater. 114, 104203 (2021).
- [3] Sajjadinia, S. S. et al. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 233, 871–882 (2019).
- [4] Stender, M. E. et al. Biomech. Model. Mechanobiol. 12, 1073–1088 (2012).
- [5] Wilson, W. et al. Biomech. Model. Mechanobiol. 6, 43–53 (2007).
- [6] Maneewongvatana, S. et al. arXiv Prepr. cs/9901013 (1999).[7] Erdemir, A. J. Knee Surg. 29, 107–116 (2014).
- [8] Setton, L. A. et al., 299–320 (Springer Netherlands, 1996).