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Background:

• Analysis of articular cartilage (AC) through in silico methods is
crucial due to the prevalence of osteoarthritis [1].

• Multiphysics models can achieve high-fidelity AC simulation by
computing osmotic pressure.

• Osmotic pressure leads to pre-stressing in the model, which can
be handled using a pre-stressing algorithm (PSA).

Motivations:

• Our previous research [2] presented a PSA with separate
geometrical and material optimizations, which might be too
expensive for a large-scale simulation.

• Biomechanical data recorded with respect to the known pre-
stressed state may still lead to theoretical inconsistencies.

Aims:

• To develop an automatic pipeline for large-scale pre-stressing
using a unified optimizer.

• To perform a pre-stressing analysis on a knee model.
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Modeling:

• AC components contribute to the load resistance by [2-5]:

𝛔 = 𝛔𝐶𝑂𝐿 − 𝛔𝑀𝐴𝑇 + 𝛔𝐺𝐴𝐺 − 𝑝I
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• Material parameters are determined using the experimentally
observed microstructure of the pre-stressed knee, as indicated
by the normalized depth (ND) and split lines on the AC surfaces.

• ND values are calculated by an algorithm of the nearest neighbor
searching [6] to then approximate the pointwise values of the
reference state 𝐕REF, set as the PSA target.

• The optimizer updates the geometrical and material state 𝐯
(including the nodal coordinate 𝐱) to reach the target state:

𝐯𝑡−1 𝐱𝑡 𝐯𝑡

With 𝐯0 ≔ 𝐕REF and the residual function 𝑟 = 𝐯𝑡 − 𝐯𝑡−1 ∞,
updating finite element (FE) mesh with the zeta parameter ζ
using the forward analysis:

𝐱𝑡 ≔ ζ 𝐱𝑡−1 − 𝐱𝑡

And the backward analysis starts with 𝐕REF to reach 𝐱𝑡

Simulation:

• The FE model is extracted from the Open Knee project [7].
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• The pre-stressing effects
are recorded with an
emphasis on the deep
and contacting layers of
the tibiofemoral joint, as
shown on the right.
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• The PSA algorithm was found to be highly efficient, taking around 3
hours to complete, but this could be reduced to an hour with a rough
error of 0.001 mm.

• The deformation results were consistent with expectations, with the
maximum effect observed on the contacting surfaces.

• Our findings indicate that total and fibrillar stresses on the contacting
surfaces are negligible and may not be affected by pre-stressing.
However, the deeper zones may not follow the same pattern.

• The PSA algorithm needed minimal human intervention, only for
adjusting the value of zeta.

• The results can be indirectly validated by comparing them to the
previous study [8].
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