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Background:

* Analysis of articular cartilage (AC) through in silico methods is
crucial due to the prevalence of osteoarthritis [1].

* Multiphysics models can achieve high-fidelity AC simulation by
computing osmotic pressure.

* (Osmotic pressure leads to pre-stressing in the model, which can
be handled using a pre-stressing algorithm (PSA).

Motivations:

* Qur previous research [2] presented a PSA with separate
geometrical and material optimizations, which might be too
expensive for a large-scale simulation.

* Biomechanical data recorded with respect to the known pre-
stressed state may still lead to theoretical inconsistencies.

Aims:
* To develop an automatic pipeline for large-scale pre-stressing
using a unified optimizer.
* To perform a pre-stressing analysis on a knee model.

[ Methodology

Modeling:

* AC components contribute to the load resistance by [2-5]:
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* Material parameters are determined using the experimentally
observed microstructure of the pre-stressed knee, as indicated
by the normalized depth (ND) and split lines on the AC surfaces.

* ND values are calculated by an algorithm of the nearest neighbor
searching [6] to then approximate the pointwise values of the
reference state VREF set as the PSA target.

* The optimizer updates the geometrical and material state v
(including the nodal coordinate X) to reach the target state:

forward backward
t=1 analysis = U analysis = 't

With v, := VREF and the residual function 7 = ||v; — V;_{|| o,
updating finite element (FE) mesh with the zeta parameter (
using the forward analysis:

X; = 0(X¢—1 — X¢)
And the backward analysis starts with VREF to reach x,

Simulation:

* The FE model is extracted from the Open Knee project [7].
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Discussion and conclusions }

* The PSA algorithm was found to be highly efficient, taking around 3
hours to complete, but this could be reduced to an hour with a rough
error of 0.001 mm.

* The deformation results were consistent with expectations, with the
maximum effect observed on the contacting surfaces.

* Qur findings indicate that total and fibrillar stresses on the contacting
surfaces are negligible and may not be affected by pre-stressing.
However, the deeper zones may not follow the same pattern.

* The PSA algorithm needed minimal human intervention, only for
adjusting the value of zeta.

* The results can be indirectly validated by comparing them to the
previous study [8].
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