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Element

Regional loading

Integration point

Initial condition

(e.g. initial pressure on an area) Boundary condition

(e.g. fixed points)
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Hybrid machine : Multiscale
Improving Data
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High-fidelity model: multi-physics equations
Low-fidelity model: viscoelastic equations

Small-scale simulation: contacting bodies
with a simple mesh

Large-scale simulation: contact in a
tibiofemoral joint
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Aims:

Smdaton:
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= Analysa of articub cartlage (AC) through in sico methods i
1l

LARGE-SCALE FINITE ELEMENT MODELING OF PRE-STRESS IN
ARTICULAR CARTILAGE
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Introduction

crucial due 1o the prevalence of asteoarthrtis

* Muiphysics modes can achieve high-delty AC simudation by
computing ol pressure.

= Dsmotic prossure leads to pro stressing in the modol, which can
b e using # pro-stresing algorthen (PSA).

* Our_previous research (7] peesanted & FSA with separate

o and materiol optmstons, which might be 100
expensiv fo  ge-scabe simulaion.

* Biomechanicl data reconded it 650¢ct 10 the Kogn pre-
stresedstate may 36 e 1o theoretical consienies.

* Yo develop an automatic ppeline for large-scole prestressing
using 3 unied optimcer.
* To pertorm u - stressing analyss 01 4 bee model

Methodology

Discussion and conclusions

* The PSa akgorithen was found to be ighly eficient, taking around 3
hours 10 completa, but this coukd be raduced 10 3n hour with 3 rough
artor of 0,001 e
* The deformation resuits weve consistent with expectatons, with the
i effect absorved on the contacting surfaces.
* Our findings idcate thattotal and el stresses on the cortactng
surfaces are negigile 303 may not be affecied by prestressng,
Howesr, the doaper 10096 may nat falow the <ame pattem.

PSa. aigorthm needed minimal human inserventon, only for
o Sl sk adjusting the value o zeta
b Ty * The results can be indirecty validated by comparing them 1o the

X =y - %) previous sty 18]

A the backward asalysis strts with VA** to reach x,

* The FE ol s extracted from the Open Knee profect (7).

v roccaded with an
emghass on the deep
snd contacting layers of
the tbiofermceal jint a5
shawn on the rght.
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Graph definition and
batching

ODB database from
the high-fidelity model

Training with:

TFRecords ||

ODB database from the
low-fidelity model

MAE loss

Applying Time points

]

MAE loss with static subgraphing

Finite element
modeling

v

Hybrid model

MAE loss with dynamic subgraphing

5

Machine
» leaning Model

Define the loss function
and train the model

f

Weighted loss

Get nodalrrors [+ Dynamically weighted loss '-_.:
Subgraph the Sample interpolated b :
No muglltigFr)aph and[r)ota1edr$rames MaXImaI IOSS (tOp 100) i
e l
Graph sum Maximal loss (top 10000)
A Spatitalt_ ‘ N;)isi
ugmentation application
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Fluid pressure

Noise Latent Averaged Valid Averaged Test Max Valid Max Test Max

Type Std Size Error Error Error Error K
MAE loss with dynamic subgraphing 0.2 16 0.57 0.81 3.49 6.39 1
MAE loss with static subgraphing 0.2 64 0.33 1.04 3.77 6.93 1
MAE loss 0.2 64 0.19 0.22 3.05 3.75 1
Dynamically weighted loss 0.2 64 0.41 0.5 3.99 5.23 1 :
Weighted loss 02 64 0.38 0.57 3.61 5.88 1 £
Maximal loss (top 100) 0.2 64 0.37 0.48 2.5 3.58 1
Maximal loss (top 10000) 0.2 16 0.26 0.29 2.77 3.53 1




Osmotic pressure

Noise Latent Averaged Valid Averaged Test Max Valid Max Test Max

Type Std Size Error Error Error Error K

MAE loss with dynamic subgraphing 0.1 64 0.24 0.27 2.3 2.65 0.5

MAE loss with static subgraphing 0.1 64 0.29 0.35 2.45 2.69 0.5
MAE loss 0.1 64 0.13 0.16 2.54 2.74 0.5 ‘f:
Dynamically weighted loss 0.1 64 0.18 0.24 1.73 1.96 0.5 :
Weighted loss 0.1 64 0.15 0.19 2.07 2.25 0.5

Maximal loss (top 100) 0.1 64 0.21 0.3 1.55 1.99 0.5

Maximal loss (top 10000) 0.1 64 0.15 0.22 1.88 2.6 0.5




Fibrillar stress

Type
MAE loss with dynamic subgraphing

MAE loss with static subgraphing

MAE loss
Dynamically weighted loss
Weighted loss
Maximal loss (top 100)
Maximal loss (top 10000)

Noise
Std

0.5

0.5

0.5
0.5
0.5
0.5
0.5

Latent
Size

16

64

64
64
64
64
64

Averaged Valid
Error

0.59

0.44

0.32
0.44
0.44
0.38
0.35

Averaged Test
Error

0.72

0.66

0.33
0.68
0.78
0.42
0.44

Max Valid
Error

2.93

2.45

2.69
3.24
2.43
1.93
. Ol

Max Test
Error

2.94

2.56

2.75
3.23
2.47
1.97
1.99

Max
K

0.5

0.5

0.5
0.5
0.5
0.5
0.5
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