BRIDGING TISSUE-SCALE MULTI-PHYSICS TO ORGAN-SCALE BIOMECHANICS THROUGH MULTI-FIDELITY MACHINE LEARNING

BY

SEYED SHAYAN SAJJADINIA (UNIBZ)

CO-AUTHORED BY BRUNO CARPENTIERI (UNIBZ)

GERHARD A. HOLZAPFEL (TU GRAZ)

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

CMBBE 2023 SYMPOSIUM

18TH INTERNATIONAL SYMPOSIUM ON COMPUTER METHODS
IN BIOMECHANICS AND BIOMEDICAL ENGINEERING

Preliminaries:

- Knee biomechanics
- Articular cartilage
- Finite element modeling
- Machine learning surrogates
- Multi-fidelity machine learning
- Graph-based inductive learning

Preliminaries:

- Knee biomechanics
- Articular cartilage
- Finite element modeling
- Machine learning surrogates
- Multi-fidelity machine learning
- Graph-based inductive learning

S. S. Sajjadinia, B. Carpentieri, and G. A. Holzapfel, "A backward pre-stressing algorithm for efficient finite element implementation of in vivo material and geometrical parameters into fibril-reinforced mixture models of articular cartilage," Journal of the Mechanical Behavior of Biomedical Materials, vol. 114, p. 104203, 2021.

Preliminaries:

- Knee biomechanics
- Articular cartilage
- Finite element modeling
- Machine learning surrogates
- Multi-fidelity machine learning
- Graph-based inductive learning

S. S. Sajjadinia, B. Carpentieri, D. Shriram, and G. A. Holzapfel, "Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues," Computers in Biology and Medicine, no. Sep, p. 105699, 2022.

Preliminaries:

- Knee biomechanics
- Articular cartilage
- Finite element modeling
- Machine learning surrogates
- Multi-fidelity machine learning
- Graph-based inductive learning

S. S. Sajjadinia, B. Carpentieri, D. Shriram, and G. A. Holzapfel, "Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues," Computers in Biology and Medicine, no. Sep, p. 105699, 2022.

Preliminaries:

- Knee biomechanics
- Articular cartilage
- Finite element modeling
- Machine learning surrogates
- Multi-fidelity machine learning
- Graph-based inductive learning

S. S. Sajjadinia, B. Carpentieri, D. Shriram, and G. A. Holzapfel, "Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues," Computers in Biology and Medicine, no. Sep, p. 105699, 2022.

Preliminaries:

- Knee biomechanics
- Articular cartilage
- Finite element modeling
- Machine learning surrogates
- Multi-fidelity machine learning
- Graph-based inductive learning

RESEARCH AIMS

Hybrid machine learning with different frames

Improving training

Data augmentation

Multiscale surrogate modeling

METHODOLOGY: INTERPOLATION

METHODOLOGY: BIOMECHANICS

- High-fidelity model: multi-physics equations
- Low-fidelity model: viscoelastic equations
- Small-scale simulation: contacting bodies with a simple mesh
- Large-scale simulation: contact in a tibiofemoral joint

See my poster

METHODOLOGY: DATA AUGMENTATION

METHODOLOGY: WORKFLOW

Training with:

- MAE loss
- MAE loss with static subgraphing
- MAE loss with dynamic subgraphing
- Weighted loss
- Dynamically weighted loss
- Maximal loss (top 100)
- Maximal loss (top 10000)

RESULTS AND DISCUSSION

Fluid pressure

Туре	Noise Std	Latent Size	Averaged Valid Error	Averaged Test Error	Max Valid Error	Max Test Error	Max K
MAE loss with dynamic subgraphing	0.2	16	0.57	0.81	3.49	6.39	1
MAE loss with static subgraphing	0.2	64	0.33	1.04	3.77	6.93	1
MAE loss	0.2	64	0.19	0.22	3.05	3.75	1
Dynamically weighted loss	0.2	64	0.41	0.5	3.99	5.23	1
Weighted loss	0.2	64	0.38	0.57	3.61	5.88	1
Maximal loss (top 100)	0.2	64	0.37	0.48	2.5	3.58	1
Maximal loss (top 10000)	0.2	16	0.26	0.29	2.77	3.53	1

RESULTS AND DISCUSSION

Osmotic pressure

Туре	Noise Std	Latent Size	Averaged Valid Error	Averaged Test Error	Max Valid Error	Max Test Error	Max K
MAE loss with dynamic subgraphing	0.1	64	0.24	0.27	2.3	2.65	0.5
MAE loss with static subgraphing	0.1	64	0.29	0.35	2.45	2.69	0.5
MAE loss	0.1	64	0.13	0.16	2.54	2.74	0.5
Dynamically weighted loss	0.1	64	0.18	0.24	1.73	1.96	0.5
Weighted loss	0.1	64	0.15	0.19	2.07	2.25	0.5
Maximal loss (top 100)	0.1	64	0.21	0.3	1.55	1.99	0.5
Maximal loss (top 10000)	0.1	64	0.15	0.22	1.88	2.6	0.5

RESULTS AND DISCUSSION

• Fibrillar stress

Туре	Noise Std	Latent Size	Averaged Valid Error	Averaged Test Error	Max Valid Error	Max Test Error	Max K
MAE loss with dynamic subgraphing	0.5	16	0.59	0.72	2.93	2.94	0.5
MAE loss with static subgraphing	0.5	64	0.44	0.66	2.45	2.56	0.5
MAE loss	0.5	64	0.32	0.33	2.69	2.75	0.5
Dynamically weighted loss	0.5	64	0.44	0.68	3.24	3.23	0.5
Weighted loss	0.5	64	0.44	0.78	2.43	2.47	0.5
Maximal loss (top 100)	0.5	64	0.38	0.42	1.93	1.97	0.5
Maximal loss (top 10000)	0.5	64	0.35	0.44	1.91	1.99	0.5

THANK YOU