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Abstract. Finite element (FE) methods and multiphasic equations are
commonly used to model articular cartilage (AC). This tissue has a fixed
negative charge that leads to osmotic pressure in its structure, causing
pre-stress. A challenge in FE modeling of AC is to start the simula-
tion with the correct in vivo pre-stressed state of the tissue, which is
traditionally handled by custom optimizers, the so-called pre-stressing
algorithm (PSA). These algorithms, which have been successfully im-
plemented in small-scale models, detect either the geometrical stress-
free state, constitutive stress-free state, or both. Therefore, this work
aims to extend it to a larger-scale AC model in a human tibiofemoral
joint, developed using depth-dependent and multiphasic equations of
AC. We employed a unified optimizer, rather than sequential optimiz-
ers, to reduce the number of algorithmic iterations. Also, fibrillar ori-
entations and other microstructural properties of the AC substructures
are approximated by defining the approximate normalized depth. The
pre-stressed state is calculated in around six hours, revealing the noted
depth-dependent stresses. To facilitate future research, the PSA is open-
sourced at https://github.com/shayansss/psa.
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1 Introduction

The articular cartilage (AC) in the human knee permits lubricated and smooth
bone contact. This tissue is composed of a mixture of fibril-reinforced and non-
fibrillar components and a charged biphasic medium that can be modeled by
finite element (FE) analysis. Due to its electrochemical characteristics and in
particular its osmotic pressure, the solid AC matrix withstands a pre-stress even
without external load [12].

When modeling the AC pre-stressing using regular FE methods, the initial
state of the model changes as the tissue expands to equilibrium (when the AC
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fibrils are stretched). Since this initial in vivo (stress-free) state is unknown,
inverse FE methods (or more precisely, fixed-point-based backward optimizers)
are commonly used to approximate this state [14, 9]. These algorithms are very
simple compared to the other methods but still very iterative.

In particular, it has been shown that with two different optimizers (one for
calculating the initial geometry and the other for calculating the initial material
parameters), the stress-free state could be approximated in small-scale AC mod-
els [9]. Therefore, the present work aims to extend this approach to a larger-scale
cartilage model, specifically to the AC substructures of a tibiofemoral joint. We
used a pre-stressing algorithm (PSA) with a unified optimizer. Additionally, this
work attempts to simulate the pre-stressed state at this larger scale to elucidate
its significance for biomechanical simulation.

2 Materials and Methods

In this section, the superscript REF refers to the known (experimentally ob-
served) values once the FE model is pre-stressed and reaches equilibrium, while
subscript 0 refers to the initial state of an FE analysis. Furthermore, the super-
script (t) refers to the values at step t of the pre-stressing iterative algorithm
that attempts to approximate the stress-free state of the affected parameters.

2.1 Constitutive modeling

The total stress tensor σ is calculated using the biphasic theory as follows [7]

σ = σEFF − pI. (1)

Here, p is the fluid pressure, I is the unit identity tensor, and σEFF is the (effec-
tive) solid stress. Given the superscripts MAT, COL, and GAG, representing the
contribution of the non-fibrillar matrix, fibrillar network, and osmotic pressure,
respectively, we then use the constrained mixture theory [13, 8], i.e.,

σEFF = σCOL + σMAT − σGAG, (2)

where [9]
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Here, we have assumed that the AC has 9 predominant fibrillar bundles, includ-
ing 7 secondary and 2 primary fibrils [16]. For the I-th bundle, the unit direction,
logarithmic strain, volume fraction, and elongation are represented as nI , εI , ρIC ,
and λI , respectively. The deformation gradient F is the partial derivative of the
deformed coordinates x relative to the undeformed coordinates, which also gives
the volume ratio J = detF. The values of the total collagen and solid volume
fractions are denoted by ρCOL and ∅S, respectively, while the other parameters
are material constants. Then the pre-stress before equilibrium σ0 can be calcu-
lated from (5) by assuming no initial deformation (F0 = I) and no initial fluid
pressure, i.e.

σ0 = −α1I > 0. (6)

Due to the soft nature of AC, this matrix deforms until an equilibrium is reached
where no further changes in the material occur. With this deformation of the
AC, the material fractions and the fibrillar orientation must be altered [15, 13],
as

n =
Fn0

∥Fn0∥2
, (7)

∀φ ∈
{
∅S, ρCOL

}
, φ =

φ0

J
, (8)

where ∥ ∥2 denotes the L2 norm [9]. On the other hand, these material properties
are depth-dependent [16], such as the anisotropic fibrillar orientations, which
are parallel to the AC surface in the superficial zone but perpendicular to the
calcified cartilage in the deep zone. These heterogeneous parameters are therefore
determined by the normalized depth z (relative to the AC surface).

Accordingly, we modify the definition of the normalized depth so that it
can be used in large-scale AC models with highly heterogeneous thicknesses.
Knowing the pointwise position xREF, we can find (in parallel) the closest nodal
coordinates on the upper and lower AC surfaces using an algorithm of the nearest
neighbor searching [5]. In this way,

z =
dt

dt + db
, (9)

where dt and db are respectively the distances to the closest points in the AC
top and bottom surfaces.

Furthermore, in 2D models, e.g., [9, 10], the fibrillar orientations have been
defined in terms of the coordinate basis vectors of the symmetry plane (contain-
ing the primary fibrils). However, since our large-scale model is not symmetrical,
we define a local plane at each point, taking into account the fact that the pri-
mary fibrils inside this plane in the AC surface form split lines that are roughly
directed toward the center of each cartilage substructure [6]. This local plane
can then be determined as it contains one vector pointing towards the central
point as well as another vector that connects the closest points on the surfaces.
Figure 1 provides a visual example of these vectors, illustrated with blue arrows.
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Fig. 1. Example of split line orientations on a cartilage substructure (left) and a local
plane of a point (right).

The fibrillar model employed in this study is based on the Wilson et al. model
[15], while the non-fibrillar component is a modified neo-Hookean model that
accounts for the dependency of solid volume fraction and tissue compressibility
[16, 8]. The osmotic pressure is defined using the Poisson–Boltzmann cell model
[13, 1]. Readers may refer to these studies for further details.

2.2 Pre-stressing algorithm

The initial values of the parameters affected by the pre-stressing in the numerical
model are denoted by s and include the positional data x and the constitutive
data m (i.e., components of n, ∅S, and ρCOL). The PSA then performs the
following stepwise analyses according to

s
(t)
0

forward analysis−−−−−−−−−−→ x
(t+1)
0

backward analysis−−−−−−−−−−−→ m
(t+1)
0 . (10)

Therefore, the forward analysis is used to approximate the stress-free geometry,
and the change in the constitutive properties at this state is determined through
the backward analysis.

Forward analysis. Applying the pre-stress through (6), on the model with the

initial state s
(t)
0 , one obtains the pre-stressed configuration x̂(t) by an FE anal-

ysis and the constitutive model described in the previous subsection. Defining
displacement-based update function u by

u(t) := x̂(t) − xREF, (11)

then the stress-free configuration is updated as follows

x
(t+1)
0 :=

{
x
(t)
0 − ζ(t)u(t) if r (t) ≤ r (t−1),

x
(t)
0 if r (t) > r (t−1),

(12)
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where ζ is a scaling parameter and r is the residual, both determined by the
optimizer.

Backward analysis. By confining all AC points with the following displacement-
based boundary condition b (distributed on the FE nodes), i.e.

b(t+1) :=

{
−ζ(t)u(t) if r (t) ≤ r (t−1),

0 if r (t) > r (t−1),
(13)

then an FE analysis can calculate the updated material state m
(t+1)
0 via (7) and

(8), provided that the analysis starts with state s
(t)
0 , i.e.

n
(t+1)
0 =

F̌(t)n
(t)
0∥∥∥F̌(t)n
(t)
0

∥∥∥
2

, (14)

∀φ ∈
{
∅S, ρCOL

}
, φ

(t+1)
0 =

φ
(t)
0

detF̌(t)
. (15)

Here, F̌ is the deformation gradient of the inverse analysis determined by the
solver after applying the nodal condition.

Optimization. Starting with

s
(0)
0 := sREF, u(0) := 0, ζ(0) := 1, r(0) := ∞, b(0) := 0, F̌(0) := I, (16)

then using (10), the updated initial state s
(t+1)
0 , including both m

(t+1)
0 and

x
(t+1)
0 , is obtained. This operation also requires the following definitions

ζ(t) :=

ζ(t−1) if r (t) ≤ r (t−1),
ζ(t−1)

η
if r (t) > r (t−1),

(17)

r(t) :=
∥∥∥U(t)

∥∥∥
2
, (18)

where U is a vector containing all components of u at all AC nodes, and η = 4
is a hyperparameter used to avoid possible divergence (and can be varied if
convergence is not achievable). It is assumed that the optimization converges
as soon as the error calculated from (18) becomes very small, leading to the
approximated stress-free state s0.

2.3 Implementation

The boundary conditions and the FE mesh used are identical to the 3D model
used in our previous work [11], but with the second-order elements for higher
accuracy, which was developed on the basis of the Open Knee tibiofemoral model
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Fig. 2. Contour of cartilage deformation by pre-stress (left) and the convergence dia-
gram of its pre-stressing algorithm (right).

[2]. However, there are two differences: (i) the constitutive model is now mul-
tiphasic with the PSA; (ii) no external force is applied to the joint, so we can
focus solely on the effect of pre-stressing. Apart from the PSA code updates
mentioned above, the implementation of the constitutive model and PSA is sim-
ilar to our previous study [9]. Interested readers can find further details on the
exact implementation steps and the selected values for material parameters in
that study.

3 Results and Discussion

In this study, a PSA algorithm with a unified optimizer for AC is presented.
This algorithm proved to be sufficiently efficient, taking about six hours (and 6
steps) to fully converge for the tibiofemoral model. Figure 2 (right) illustrates
the convergence diagram. In particular, it shows that the running time could be
further reduced at the expense of a slight gross error of 0.01. In contrast, our
previously implemented PSA [9], which used two separate optimizers, failed to
converge even after 12 hours with first-order elements (on a regular computer).

Figure 2 (left) shows the final calculated deformation after the pre-stressing
equilibrium, demonstrating that the superficial layer has the highest deformation
(up to contact). This is because this zone is not fully constrained or pressurized,
and therefore, the pre-stressing might be neglected in damage models that focus
on the stress values of the superficial zones. However, the deeper zones do not
follow the same pattern.

The deeper layers exhibit the least deformation due to their attachment to
the subchondral bones. Figure 3 illustrates the fibrillar von Mises stress in this
constrained layer, which is close to the total stress. These values are less than 0.2,
comparable to the stresses observed in the literature under 10% strain in com-
pression tests [8, 10], highlighting the significant influence of pre-stressing. Fur-
thermore, these values could be indirectly validated by reference to pre-stresses
derived from linear triphasic modeling [3, 12], which vary below 0.4MPa depend-
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Fig. 3. Recorded stresses of the pre-stressed cartilage substructures. Values in the
contacting surfaces are negligible and therefore not shown.

ing on the stress direction. This is within an acceptable range, considering the
different geometric and mechanical modeling and calibration.

A potential limitation of this computational model lies in its highly dis-
crete organization of the fibrillar component in the constitutive equation. Con-
sequently, models reliant on fibrillar stress may experience non-physiological
stress concentrations. Addressing this issue could involve the use of higher-order
elements, a denser or more regular mesh, or the adoption of a less discrete
anisotropic equation, possibly through a fibril distribution function [4].

4 Conclusions

To our knowledge, this study is the first to explore pre-stressing in a large-scale
AC model, incorporating depth-dependent material properties. The findings re-
veal that pre-stressing can cause significant deformation, up to approximately
15% of the tissue thickness. This underscores the necessity of accurately iden-
tifying the stress-free state. Given the efficiency of the proposed PSA in deter-
mining both the stress-free state and pre-stressed conditions, we conclude that
this approach is highly applicable in AC research, particularly where the osmotic
pressure is a critical factor.
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