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Abstract: While numerical models provide indispensable tools for solving advanced

physics problems, reducing their high computational costs is a highly active research

topic. Artificial intelligence (AI) is often used for this purpose by defining data-

driven and high-performance models that learn to mimic the numerical models and

eventually replace them with machine learning (ML). In this study, we review these

so-called surrogate models, but with a focus on advanced articular cartilage (AC)

modeling. AC is a low-friction soft tissue with excellent load-bearing capacities that

covers and protects articulating bones, but given the high prevalence of cartilage

damage due to biomechanical factors, surrogate models are used to efficiently study

the multi-physics, particularly the biomechanics, of AC. To that end, we familiarize

the readers with the key biological, numerical, and learning aspects of AC mod-

els. In particular, the implicit FE modeling as a well-founded numerical method is
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briefly explained in order to clarify its benefits and complexity at the same time.

Next, we give a detailed overview of the relevant ML algorithms, and it is shown

that while the general-purpose ML models can be used as a surrogate for the AC

FE simulation, they potentially require large and expensive numerical datasets. This

can be handled by hybrid surrogates, which are based on the application of simpli-

fied numerical models in the ML surrogates. We conclude this chapter by discussing

future directions.

Keywords: biomechanics, articular cartilage, artificial intelligence, finite element

method, machine learning

1.1. Introduction
Articular cartilage (AC) is a load-bearing and lubricating soft tissue between

articulating bony ends, which under healthy conditions exhibits excellent re-

sistance and shock-absorbing abilities [Lu and Mow, 2008]. Nevertheless, the

damage to this tissue, especially due to biomechanical factors, causes signif-

icant health care costs [Salmon et al., 2016]. Therefore, the analyses of carti-

lage is a very active area in the biomedical sciences, hopefully to prevent or

detect damage in its early stages, which requires a good understanding of the

biomechanics involved [Martı́nez-Moreno et al., 2019].

Artificial intelligence (AI), particularly using machine learning (ML), has

made significant strides in biomechanical cartilage studies. These advance-

ments are evident in recent investigations on the heterogeneous material char-

acterization of knee cartilage [Hamsayeh Abbasi Niasar and Li, 2023], dam-

age classification through unique biomechanical markers [Alunni Cardinali

et al., 2023], and fiber orientation prediction in tissue [Mirmojarabian et al.,

2023]. However, the acquisition of clinical data for training these models is
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still a considerable challenge. This limitation has led to a predominant prefer-

ence for physics-based models, especially using numerical methods.

Numerical modeling, notably using finite element (FE) methods, is cru-

cial in solving (and approximating) cartilage-related physics problems [Freu-

tel et al., 2014]. Such methods find application in many scenarios: simulating

crack propagation under cyclic loading [Orozco et al., 2022], analyzing fib-

rillar components [Sajjadinia and Haghpanahi, 2021], and comparing healthy

and damaged tissues [Vulović et al., 2021], to name a few. Despite their func-

tionality, these techniques are highly iterative algorithms with significant com-

putation time, varying from minutes to days based on the hardware settings

and simulation definitions [Haut Donahue et al., 2002, Kazemi et al., 2011,

Naghibi Beidokhti et al., 2016, Wang and Yang, 2018, Lostado Lorza et al.,

2021].

One method to overcome the high computational costs of numerical simu-

lations, including cartilage analyses, is to use ML to create similar data-driven

models. These models that learn the behavior of numerical models by samples

extracted from them are usually far faster than the main numerical models that

can be used instead of them; hence, they are called surrogates. Surrogates of

biomechanical cartilage models receive special attention, see, e.g., Paiva et al.

[2012], Arbabi et al. [2016a,b], Egli et al. [2021], Sajjadinia et al. [2022]. One

goal of this chapter is to revisit these models and relevant issues, with a focus

on hybrid paradigms that use both physics-based and data-driven approaches.

This study is organized as follows: Section 1.2 first summarizes the role

of cartilage in joint biomechanics and next the cartilage components in load-
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bearing. Section 1.3 first gives a general picture of numerical modeling, fol-

lowed by a brief explanation of an example of advanced constitutive (material)

equations to get a better understanding of their application and complexity.

Section 1.4 gives an overview of the most important methods of ML with reg-

ular and hybrid algorithms, while Section 1.5 concludes this work.

1.2. Knee and Cartilage

1.2.1. Main joint substructures

A tibiofemoral joint is the largest joint within the knee and entire body (as

shown in Figure 1.1), consisting of the touching long ends of bones (namely

femur and tibia), cartilaginous tissue (including femoral cartilage, tibial car-

tilage, and menisci) and ligaments. The shape of the bones allows condyloid

joints, while the cam shape of the femoral condyles allows rotation in all axes

[Goldblatt and Richmond, 2003]. The asymmetry within this joint was created

over the course of evolution to accommodate the joint to the complex asym-

metrical dynamics of the knee caused by various musculoskeletal movements

of the body, e.g., with the regular gait [Dye, 1987].

Soft tissues play a key role in protecting the knee capsule from patho-

logical motion and conditions. Ligaments stabilize it and avoid unphysiolog-

ical positions and movements. Meniscus substructures, with their wedge-like

cross-sections, allow the distribution of the axial force on articulating surfaces;

this reduces the peak contact pressure [Walker and Erkman, 1975, Mameri

et al., 2022]. In addition, AC absorbs this compressive distributed force and
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Figure 1.1: Main substructures in a knee model: Image is extracted from Cooper
et al. [2019] under its CC BY 4.0 license, permitting reuse with a proper citation.

enables a low-friction sliding motion [Forster and Fisher, 1996]. Although

meniscal tissue has a cartilage-like composition with different but similar

biomechanical roles [Danso et al., 2014, Chen et al., 2017], we particularly

focus on AC due to its high importance in osteoarthritis studies [Buckwalter,

1995, Pearle et al., 2005, Goldring, 2012, Brody, 2015].

Osteoarthritis, a degenerative joint disease, predominantly impairs carti-

lage by gradually deteriorating its structure, leading to joint pain, discomfort,

and eventual loss of joint function [Lespasio et al., 2017]. It affects roughly

a third of individuals aged 65 and above, with a notable predominance in
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women, thereby incurring significant socioeconomic costs on healthcare sys-

tems [Chen et al., 2012, Hawker, 2019]. Despite an incomplete understanding

of the precise mechanism, recent review studies highlight potential correla-

tions, including lifestyle elements such as poor diet, some comorbidities like

diabetes, biomechanical factors (e.g., traumatic injuries), and hereditary as-

pects such as genetic risk loci [Loeser et al., 2016, Mobasheri et al., 2017,

Astephen Wilson and Kobsar, 2021].

In light of these correlations, biomechanical studies have proven essential

in shaping strategies for rehabilitation and exercise [Kong et al., 2022]. On

the other hand, AC, much like other connective tissues, gains its functional

properties largely from extracellular components, specifically collagen fibrils

and proteoglycan proteins [Culav et al., 1999, Brody, 2015]. Consequently, a

large focus of biomechanical research involves simulating the interaction of

these components or phases [Klika et al., 2016, Ebrahimi et al., 2019, Sajja-

dinia et al., 2019, Lin et al., 2021, Paz et al., 2022], which is outlined in the

following subsection.

1.2.2. Load-bearing cartilage phases

Aggrecans, the most common proteoglycan molecules in AC, are connected

to the chains of hyaluronic acid to form large aggregates that are trapped in

the collagen network. Because of their constituent glycosaminoglycan (GAG),

which are negatively charged compounds, they have a fixed negative charge,

resulting in a chemical potential gradient that attracts water to achieve chem-
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ical equilibrium, i.e. the mechanism of osmosis [Kiani et al., 2002, Gómez-

Florit et al., 2020, Johnson et al., 2021]. The aggregates are then responsible

for the vital osmotic pressure that contributes to the load-bearing of the tis-

sue by counteracting the applied loads. Moreover, this internal pressure swells

the tissue, which is compensated by stretching of the collagen network, which

increases the reversible deformation of the tissue [Dudhia, 2005].

Thanks to the osmotic pressure of AC and the porous structure of the

tissue, water makes up about 60–80% of the tissue [Cederlund and Aspden,

2022]. This not only maintains perfect lubrication on the surface of AC but

also resists external loads as the hydrostatic fluid pressure, usually more than

the other load-bearing components [Quiroga et al., 2017, Sajjadinia et al.,

2019]. Together with the solid constituents, the tissue can then be viewed as

a biphasic mixture with a fluid phase and an effective solid phase (consid-

ering the overall effect of solid components such as aggregates and collagen

networks). In addition, the water flow in the small solid pores at the begin-

ning of cartilage deformation creates a considerable drag force between the

two phases, which balance out over time [Mow et al., 1980]. This results in a

greater resistance to tissue deformation, which is regularly determined by the

level of permeability [Eschweiler et al., 2021].

Besides, collagen fibrillar networks reinforce AC against tensile forces,

like structural wire ropes [Bozec et al., 2007, Bielajew et al., 2020]. It is ob-

served that the fibrils can be classified into primary anisotropic (direction-

dependent) and secondary isotropic (direction-independent) bundles [Clark,

1985, Wilson et al., 2004]. The isotropic bundles of the healthy tissue tend to
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be oriented roughly parallel to and between all axes of Euclidean (geometri-

cal) space, while the anisotropic bundles are oriented in an arcade-like fashion:

they extend perpendicularly from the calcified regions in the deep zone of AC

and gradually rotate in the middle zone to become parallel to the AC surface

[Wilson et al., 2004]. While the fibrils are anchored to the bones in this way,

they protect the surface from shear-induced damages [Shirazi and Shirazi-Adl,

2008, Motavalli et al., 2014].

For further clarification, Figure 1.2 is extracted from an osteoarthritis study,

which represents one of the possible scenarios in this condition, assuming that

AC is viscoelastic: while elasticity describes the reversible deformation of the

tissue, viscosity is the energy loss during this deformation (e.g., due to drag

force). In this particular case, the main measurable material properties, includ-

ing the storage and loss moduli, correspond to the ability to store elastic energy

and the ability to dissipate energy, respectively [Banks et al., 2011]. How-

ever, in a more general formulation of AC biomechanics, calculating the pre-

cise long-term and short-term local responses requires multi-physics constitu-

tive equations (which simultaneously account for at least some of the above-

mentioned constituents). Because of their complexity, they are implemented

by some numerical approximation methods, e.g., the FE method [Freutel et al.,

2014].
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Figure 1.2: A possible scenario for osteoarthritis in articular cartilage is as follows:
in the early stages, the tissue matrix undergoes degradation, resulting in an increase
in water content. However, in more advanced conditions, it manifests itself through
wear and tear on the tissue surface. The image has been modified from Cooke et al.
[2018] under its CC BY 4.0 license, allowing for reuse with correct citation.
Abbreviation: HA = hyaluronic acid.

1.3. Physics-based modeling

1.3.1. Numerical modeling

In cartilage modeling, the effects of weight and inertia are usually ignored,

given the low density of the tissue [Pearle et al., 2005]. By applying New-

ton’s second law, we can argue that any force exerted on the tissue boundary,

i.e., surface traction, should be balanced (although it can deform the model to

reach equilibrium). This balance can be illustrated by the following simplified

equilibrium equation in 3D Euclidean space, i.e.

∫
s

tdS = 0, (1.1)
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where S is the surface area of the deformed solid material, and t is the surface

traction, which is correlated with the total Cauchy stress tensor σT as

t = σT · n, (1.2)

where n is the outward normal to the surface and the stress tensor can be

roughly interpreted as the distribution of force effects at each point. Now we

use the divergence theorem on the surface integral, which relates the flux of a

field (stress in this case) on a closed surface to the spatial divergence of that

field within the volume, such that

∫
S

σT · ndS =

∫
V

∇xσTdV, (1.3)

where ∇x(•) is the gradient operator of • with respect to the deformed position

vector x. We can eliminate the integration to get the following differential

equation

∇xσT = 0. (1.4)

FE software packages commonly use the weak form of differential equations.

For example, using the principle of virtual work [Antman and Osborn, 1979],

eq. (1.4) can be rewritten as

∫
V

∇xσT · δudV = 0, (1.5)

where δu denotes the virtual (non-zero) displacement field, which generates

the virtual work. In practice, this variation simplifies the equation, as the result
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of the integral is now a scalar value. Furthermore, using the integration by parts

of this equation, the divergence theorem, and eq. (1.2), we can now directly

impose the traction on the boundaries and remove the derivative term from the

stress parameter [Holzapfel, 2000, Belytschko et al., 2014]:

∫
V

σT : ∇xδudV −
∫
S

t · δudS = 0. (1.6)

Next, to account for the fluid contribution in cartilage load-bearing, we can

use the continuity equation with the assumption that AC is a porous medium

fully saturated with water. Thus,

d

dt

(∫
V

ρϕFdV

)
+

∫
S

ρϕFn · vrdS = 0, (1.7)

where ρ is the mass density of the fluid, vr is the relative velocity of the fluid

with respect to the solid structure, and ϕF is the local volume fraction of the

fluid. Conceptually, the first term models the rate of fluid change inside the

tissue, whereas the second term reflects the amount crossing the boundary.

Introducing the volume ratio J into the first term (to include the deformation

of the solid structure) and applying the divergence theorem to the second term,

the following partial differential equation is achieved

1

J

d

dt

(
JρϕF

)
+∇ ·

(
ρϕFvr

)
= 0. (1.8)

The finite difference method can be used to approximate the temporal deriva-

tive by discretizing the time domain into time step ∆t. In particular, the back-
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ward Euler formula is used to approximate the temporal derivative of a func-

tion y by shifting the current time step one step forward and then applying the

backward difference approximation according to

[
dy

dt

]
t+∆t

≈ yt+∆t − yt
∆t

. (1.9)

Now, similar to the equilibrium equation, a weak form can be derived from

eq. (1.8), and then the divergence theorem can be applied, yielding

∫
V

(
[δP ]t+∆t

([
JρϕF

]
t+∆t

−
[
JρϕF

]
t

)
−∆t

[
ρϕF∇xδP · vr

]
t+∆t

)
dV

+∆t

∫
S

[
δPρϕFn · vr

]
t+∆t

dS = 0, (1.10)

where δP is the virtual fluid pressure.

Next, FE methods are used to discretize the continuous spatial domain. For

example, given a nonlinear 1D function f(x), it can be approximated by f̄(x)

as

f̄(x) =
n∑

i=1

2∑
j=1

N i
j (x)f(xi). (1.11)

Here, the geometrical domain is discretized into 1D FEs, where xi is the nodal

input value of the element i corresponding to the nodal result f(xi) with do-

main [xi−1, xi], and N (x) is the shape function that can be defined by

N i
1(x) =

xi − x

xi − xi−1

and N i
2(x) =

x− xi−1

xi − xi−1

. (1.12)

Conceptually, these particular shape functions approximate f(x) as a group of
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simpler linear functions connected with each other at their nodes. Likewise,

by generalizing this to the 3D space with displacement and fluid pressure

nodal values, the shape functions N P and N u are defined to spatially dis-

cretize, respectively, P and u (and their virtual variations). Substituting them

into eqs. (1.10) and (1.6) results in

F = 0, (1.13)

where, F = [F1,F2]
T with

F1 =

∫
V

[σ : ∇xN u]t+∆t dV −
∫
S

[t · N u]t+∆t dS, (1.14)

F2 =

∫
V

(
N p

t+∆t

([
JρϕF

]
t+∆t

−
[
JρϕF

]
t

)
−∆t

[
ρϕF∇xN p · vr

]
t+∆t

)
dV

+∆t

∫
S

[
N pρϕFn · vr

]
t+∆t

dS = 0. (1.15)

This discretization technique is referred to as implicit FE modeling because it

provides a set of equations between the unknown parameters at the end of time

step t+∆t and the known parameters at step t (obviously once the discretized

constitutive equations and additional conditions have been applied). Due to

the high stability of this method, well-established software packages such as

Abaqus use similar formulations. However, the existence of a nonlinear system

of equations requires the use of a root-finding technique such as Newton’s

method [Almeida and Spilker, 1997, Belytschko et al., 2014].
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We denote U as the vector of system variables, such as {u1, u2, u3, P},

where u1, u2, and u3 correspond to the components of u in the 3D Cartesian

coordinate system. To linearize eq. (1.13), Newton’s method uses the Jacobian

matrix J(i) at each iteration i, i.e.

J(i) =

∂F(i)
1

∂u
(i)
1

· · · ∂F(i)
1

∂P (i)

∂F(i)
2

∂u
(i)
1

· · · ∂F(i)
2

∂P (i)

 , (1.16)

where

F (i) = F
∣∣∣
Ut=U(i−1), Ut+∆t=U(i)

, (1.17)

assuming that i ∈ N and U(0) is the previously known value of U at the be-

ginning of the increment (i.e., the values that have been computed from the

previous increment or the initial state). In this manner, it linearizes the nonlin-

ear equations iteratively with an initial guess U(1), i.e.

F (i+1) = F (i) +
(
U(i+1) − U(i)

)
· J(i). (1.18)

To solve this problem, at each step the integrations in the discretized equations

for each FE are calculated (typically with numerical approximation), resulting

in a set of linear equations. These equations can then be solved either directly

or iteratively using well-established techniques in linear algebra, thereby de-

termining U(i+1). This process is assumed converged once
(
F (i+1)

)2 becomes

sufficiently small, indicating that eq. (1.13) is approximately solved and the

unknown parameters are estimated at step t + ∆t. This is an extremely sim-

plified representation of the numerical modeling, which can give an overall
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Figure 1.3: Examples of finite element studies, showing that element shapes depend
on the geometric complexity and physics problems. The image has been modified
from Orava et al. [2022], Orozco et al. [2022] and Ardatov et al. [2023] under their
CC BY 4.0 license, permitting reuse with a proper citation.

understanding of the solution procedure and its highly iterative nature [Be-

lytschko et al., 2014]. Furthermore, the exact definition of the shape functions

may vary depending on the specific physics problem, e.g., the existence of

contact mechanics and geometric complexity (Figure 1.3). Some implemen-

tations may use more advanced linearization techniques or apply an explicit

FE method [Almeida and Spilker, 1997, Korsawe et al., 2006, Nakahara et al.,

2016]. But regardless of these differences, they are still developed based on

similar iterative algorithms, which explains why they can be expensive to run.

1.3.2. Constitutive modeling

We first introduce the tensors that are often used in constitutive modeling of

nonlinear materials [Holzapfel, 2000]. Suppose ∇X(•) is the gradient operator

of • with respect to the vector of undeformed position X and I is the identity
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tensor, the deformation gradient F is calculated as

F = I+∇Xu. (1.19)

This is a measure of the relative deformation, formulated by a second-order

tensor, which can be decomposed into an orthogonal tensor (i.e., the rotation

tensor R) and a positive definite symmetric tensor (i.e., the left stretch tensor

V), i.e.

F = VR. (1.20)

This equation allows us to focus only on the stretch in the tissue (which is

responsible for the stress response of the tissue in AC analyses), since RTR =

I. The left Cauchy-Green tensor B is thus defined in such a way to exclude

the effect of rigid body rotation. For this reason,

B = FFT = V2. (1.21)

These tensors can be associated with the volume ratio by

J =
√
detB = detF > 0. (1.22)

With anisotropic materials, it is imperative to include the direction dependency

in their equations. For example, the direction of the fibril bundle I is given by

the unit direction vector NI , which can change to its new unit direction nI

after deformation. It can be calculated by first deforming the initial direction
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vector (using the deformation gradient) and then scaling it to its unit size, i.e.

nI =
FNI

∥FNI∥2
, (1.23)

where ∥•∥2 denotes the l2 norm of •. Instead of considering the entire defor-

mation, we can now focus on the deformation in the specific direction of the

fibrils using the logarithmic strain ϵI in the direction of the deformed bundles

(as a measure of the large deformation). Thus,

ϵI = log(λI), (1.24)

where λI is the fibrillar stretch, which can be correlated with the total defor-

mation using finite strain theory, i.e.

λI =
√
nI ·B · nI . (1.25)

Now, the solid-fluid interaction is modeled using the classical porous me-

dia theory and Darcy’s law, stating that the fluid flows from a region of higher

pressure to lower pressure, and the rate of that depends on the material prop-

erties [Terzaghi, 1943, Dullien, 1979]. Thus,

ϕFvr = − 1

µ
K · ∇xP, (1.26)

where µ is the dynamic viscosity (the internal flow resistance of the fluid) and

K is the permeability tensor (the ability to transmit fluids through the porous
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structure). In addition, the stress caused by this pressure together with the

effective stress tensor σEFF (that transmits to the solid structure) determines

the total stress σT as

σT = σEFF − P I. (1.27)

By defining the constitutive behavior of the solid structure and its relation-

ship with tissue deformation, eq. (1.27) is fully determined. Once this equa-

tion and eq. (1.26) are discretized (as explained in the previous section), they

can be introduced into the governing equation, eq. (1.13), to replace the rel-

ative velocity and stress tensor. Regardless of this, the inclusion of advanced

multi-physics constitutive models of AC might make this process even more

iterative. This is explained here by exemplifying one of the most up-to-date

multiphasic cartilage models [Sajjadinia et al., 2021a].

The constrained mixture theory is used [Klisch, 1999], which is arguably

the most popular constitutive multi-physics model to define the effective stress

in AC. It assumes the non-fluid phases are confined together and have a similar

deformation, yielding

σEFF = σCOL + σMAT − σGAG. (1.28)

Here the superscripts COL, MAT, and GAG denote the contributions of the

fibrillar collagen network, the non-fibrillar extracellular matrix, and the os-

motic pressure, respectively [Mow et al., 1980, Wilson et al., 2005, Sajjadinia

et al., 2019].

Regarding the collagen fibrils, it is experimentally observed that they bear
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loads nonlinearly correlated with their strains [Charlebois et al., 2004], e.g.,

by (E1 + E2ϵ
I)ϵI , where E1 and E2 signify the degree of nonlinearity. This

response, before application to its constitutive equation, needs two modifica-

tions: (i) multiplication by λI/J , the inverse of the fibril bundle surface area,

to account for surface area effects; and (ii) multiplication by the components’

volume fractions, reflecting each component’s contribution according to the

mixture theory. Thus, the tensile stress in each fibril bundle σI can be evalu-

ated as follows [Wilson et al., 2007, Sajjadinia et al., 2019]

σI = ϕS
0ρ

I
C

λI

J
(E1 + E2ϵ

I)ϵI , (1.29)

where ρIC is the volume fraction of the relevant fibrils and ϕS
0 is the initial value

of the solid volume fraction. Then the stress in the collagen fibril network

σCOL can be defined considering the contributions of all fibrils [Wilson et al.,

2004], i.e.

σCOL =
9∑

I=1

σInI ⊗ nI , (1.30)

where ⊗ denotes the dyadic product. This summation takes into account the

orientations of all bundles (as explained in Section 1.2.2) and their stress con-

tributions.

Next, the osmotic pressure can be defined by first deriving a model for

glycosaminoglycan-related electrostatic force and then simplifying it by re-

lating this force only to the deformation in the solid matrix [Ateshian et al.,

2004]. This can lead to an exponential form of the osmotic stress contribution

via two positive material constants, i.e. α1 and α2 [Buschmann and Grodzin-
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sky, 1995, Stender et al., 2013], i.e.

σGAG = α1J
−α2I. (1.31)

The other components of the solid phase are usually represented by an

isotropic nonlinear elastic model, e.g., using one of the popular neo-Hookean

equations, formulated on the basis of the thermodynamics of rubber-like ma-

terials, see, e.g., Kim et al. [2012]. This model is modified to consider the

effects of the volume fractions of the material [Wilson et al., 2007, Sajjadinia

et al., 2021a], i.e.

σMAT = ϕS
0Gm

1− ρCOL
0

J

[
− ln J

6

(
3ϕS

0

J ln J

(J − ϕS
0)

2

−1− 3
J + ϕS

0

J − ϕS
0

)
I+ (B− J2/3I)

]
, (1.32)

where Gm is an additional material constant and ρCOL
0 is the initial value of

the total collagen volume fraction ρCOL. The volume fractions are updated by

the continuity equation of the solid phases as

φ =
φ0

J
φ ∈

{
ϕS, ρCOL

}
. (1.33)

While the above-mentioned equations formulate the constitute behavior

for FE analysis of cartilage, due to the fixed charges in this tissue, the in vivo

data recorded in the literature mostly consider the pre-stressed state as the

initial condition. This is in contrast to mathematical models, which typically

consider the stress-free state as the initial state, resulting in a large discrepancy
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between the initial numerical conditions and the in vivo conditions. The pre-

stress σ0 can be verified by setting F = I (which only applies the initial

boundary conditions), i.e.

σ0 = −αI. (1.34)

This causes the tissue to swell until it reaches equilibrium (as mentioned in

Section 1.2.2). This can then change the initial geometrical properties and ma-

terial fractions, e.g., according to eq. (1.33). Therefore, the numerical solvers

should first find the pre-stressed state (observable as in vivo) by starting from

the unknown stress-free state. The initial state can be approximated using a

pre-stressing algorithm, which is essentially an optimization algorithm that

employs multiple FE analyses to test various stress-free states and identify the

approximate stress-free states [Wang et al., 2018, Sajjadinia et al., 2021a]. The

application of this algorithm makes the numerical simulation more iterative,

which may be alleviated by ML, as briefly discussed in the following section.

1.4. AI-Enhanced Modeling

1.4.1. Deep learning

Assuming X and Y are the sets of corresponding measurable spaces, super-

vised ML is the task of constructing a model function f that can ideally map

each element of input data X to its corresponding member in the output set Y

according to

f : X −→ Y . (1.35)
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The output examples, used for generation and evaluation of the model, known

as labels, are typically obtained by human or systemic supervision. Each input-

output pair of samples can be characterized by multidimensional quantitative

properties (or features). For example, in a pre-stressing simulation, the known

pre-stressed geometry, physical constraints, and constitutive parameters can

be used as input features, while the labels can be the observed or numerically

calculated stress-free states.

Given a subset of labeled data Z ⊂ X×Y , a learning algorithm, especially

in the context of deep learning, finds the best function f , using the errors

measured by a loss function L, i.e.

L : M (X ,Y)×Z −→ R, (1.36)

where M (X ,Y) is the set of possible measurable and learnable functions with

different hypothetical architectures, such as artificial neural networks [Abio-

dun et al., 2019]. In the basic multi-layer feed-forward neural network (FFNN)

with fully connected or dense layers [Rumelhart et al., 1986], the sequence of

input features (i.e., the input layer) is connected to its subsequent layer. The

data derived from the previous layers provide the input signals of the next layer

up to the very last output layer (generation of the output data). Assuming such

an FFNN model represented by Ψ ∈ M (X ,Y), then

Ψ(x; ·,Θ) = ψ(L)
(
ψ(L−1)

(
· · ·

(
ψ(1)

(
ψ(0) (x)

))))
. (1.37)

Here, ψ(i) is a transformation through the layer i ∈ [0, L], with the assumption
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that layer 0 is the input layer, i.e., ψ(0)(x) = x. Also, Θ (the set of trainable

parameters) and hyperparameters (like the number of layers) define the exact

definition of each layer ψ(i). For most regression problems, the basic definition

of ψ(i) is as follows

ψ(i) (x) =

 W (i)ψ(i−1) (x) + b(i) if i = L,

a
(
W (i)ψ(i−1) (x) + b(i)

)
others,

(1.38)

whereW and b are respectively the trainable weight and bias parameters (find-

ing the best linear combination), and a is the activation function, which non-

linearly amplifies or attenuates the effects of the input signals to help capture

nonlinear patterns [Berner et al., 2022]. An efficient activation function is the

rectified linear unit function, which is basically a ramp function that ignores

the negative signals [Fukushima, 1980, Nair and Hinton, 2010], i.e.,

a(x) = max(0, x). (1.39)

During training, an initial guess of the trainable parameters is first made, which

may result in some errors in the generated output data compared to the la-

bels. This error can then be minimized by using an optimization algorithm

that iteratively changes the trainable parameters until the most accurate and

generalizable model is achieved.

The algorithm has undergone significant enhancements, most notably the

integration of normalization layers, which stabilize the training of models by

normalizing different distributions of input signals [Bianchi et al., 2012, Sali-
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mans and Kingma, 2016, Bjorck et al., 2018, Xu et al., 2019]. This allows im-

plementation of neural networks with many hidden layers to tackle complex

problems. In addition, specialized variations have been developed to cater to

distinct data structures: recurrent neural networks [Yu et al., 2019] and trans-

formers [Lin et al., 2022] for temporal information, and convolutional neural

networks [Ajit et al., 2020] for spatial information. A challenge, however, is

the lack of permutation invariance in these algorithms. This means the order of

features is relevant, which becomes problematic with FE nodal data, where the

order of nodal features to be considered is usually of no importance [Géron,

2019].

In this regard, message-passing graph neural networks (MPGNNs) have

two key benefits: their ability to maintain permutation invariance and to ef-

ficiently process varying numbers of nodes. The salient feature of MPGNNs

is their focus on individual nodes and their connections to neighboring nodes

rather than the entire mesh. Given a node n with feature vector denoted by vn,

the set Γ(n) of its neighboring nodes is derived from the mesh topology, i.e.,

the nodal connections. Subsequently, information about the neighbors is ag-

gregated using an aggregation function, such as a sum function, to be further

processed by an FFNN, i.e.

v′n = FFNN

 ∑
i∈Γ(n)

vi, vn

 , (1.40)

where v′n is the updated nodal representation. An enrichment of global infor-

mation is possible by increasing the number of sequentially message-passing
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layers connected to one another. Despite the versatility of this method, it can

be enhanced further through variations, e.g., by assigning features to each con-

nection, i.e., edge features defined by different distance metrics to account for

the nodal geometrical information. This approach eliminates the need to di-

rectly encode nodal positions as nodal features and allows spatial equivariance

in the surrogate [Cai et al., 2018, Zhou et al., 2020, Wu et al., 2021].

Incorporating edge features or other types of features may alter the aggre-

gation functions applied to each entity, such as the node and the edge, thus

potentially changing eq. (1.40). However, the underlying concepts remain the

same: the mesh data is initially converted into a graph, and two FFNNs update

each node or edge feature after aggregating the neighboring features. Conse-

quently, a transformed graph representation is generated that facilitates learn-

ing by isolating highly local data. This process can be reiterated with further

message passing until it reaches the output layer, yielding nodal outputs [Sper-

duti and Starita, 1997, Battaglia et al., 2018, Riba et al., 2018].

1.4.2. Surrogate modeling

Training the surrogates of cartilage models by supervised ML requires a set

of data samples generated from a high-fidelity numerical model, as discussed

in Section 1.3, which may become prohibitively expensive. Therefore, typical

FFNNs were trained on the data generated from simplified FE models, e.g.,

Paiva et al. [2012] used a surrogate for their multiscale cartilage simulation but

using a very simplified elastic model (ignoring the nonlinear multi-physics).
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Arbabi et al. [2016a] included the biphasic equations in their surrogate of a 2D

cartilage model, but ignored the vital osmotic pressure. Arbabi et al. [2016b]

then managed to use a multi-physics model to train the surrogate, but with

10 000 samples.

Under specific conditions, such as reducing the scale of the simulation, a

surrogate may be generated with only a few samples (see, e.g., [Faisal et al.,

2023]). However, for complex multi-physics equations, particularly in large-

scale and high-dimensional data, having a large training dataset becomes un-

avoidable. If the primary purpose of applying ML is to enhance efficiency, the

models should ideally be trained on a limited number of samples, especially

when the numerical generation of these samples is costly [Forrester et al.,

2008]. This factor often leads to the underutilization of AI-enhanced model-

ing techniques.

Our research group recently developed a specialized hybrid ML algorithm

[Sajjadinia et al., 2022] that can be trained on very small datasets of the multi-

physics models of soft tissues, especially cartilage-like materials. The key

idea is to insert a simplified version of the numerical model into the surro-

gate model by ignoring some of the physical behaviors of the high-fidelity

model, e.g., some of the constitutive equations, to create a dataset with low-

fidelity but inexpensive samples. The ML model then finds a mapping between

the low-fidelity and high-fidelity data, and therefore the high-fidelity model is

only used for training. The low-fidelity numerical model used in the surrogate

transforms the input features into more informative features, i.e., an approx-

imation of the high-fidelity results that can significantly improve the training
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Figure 1.4: Examples of 2D in-distribution and out-of-distribution models used in
the validation and test sets (right) and the corresponding plot of the trained surrogate
errors in these sets versus the number of training samples (left). The image has been
modified from Sajjadinia et al. [2022] under its CC BY 4.0 license, permitting reuse
with a proper citation. Abbreviation: MSE = mean squared error; ML = machine
learning; HML = hybrid machine learning.

performance with small datasets. This has been shown experimentally by 2D

and 3D simulations.

The 2D simulations, shown in Figure 1.4, chose a multi-physics model

with and without pre-stressing optimizers for the low-fidelity and high-fidelity

models, respectively, on two sets of in-distribution validation samples and out-

of-distribution test samples (to also assess the generalizability of the surro-

gates). The results indicate that the hybrid ML model can outperform the ML

surrogates with only four samples (using the MPGNNs that allow general-

izable inference). Likewise, through pointwise evaluation [Sajjadinia et al.,

2021b], we observed similar performance improvements in another 3D model

in that study. The latency (run-time after training) of this model was relatively
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2 to 14 times smaller, even though the numerical model had been simplified

for fast data generation.

While specialized surrogate models are not commonly applied in AC mod-

eling, likely due to the complexity of implementing numerical models, previ-

ous studies have successfully used multi-fidelity approaches with different hy-

brid or full ML surrogates. These approaches have yielded comparable perfor-

mance improvements in other application domains. Traditional ML techniques

such as Gaussian processes have predominantly been used [Cheng et al., 2021,

Zhang et al., 2022], while advanced physics problems are often implemented

using different neural network architectures [Yang and Perdikaris, 2019, Ahn

et al., 2022]. With these promising results, multi-fidelity and hybrid surrogates

are expected to further advance in the biomechanical modeling of AC.

1.5. Discussion and Conclusion
This chapter has provided an overview of biomechanical modeling methods

enhanced with AI that perform advanced numerical simulations using ML sur-

rogates. Focusing on the biomechanical constitutive modeling of cartilage, we

first reviewed the main load-bearing components of AC (to be included in the

high-fidelity simulations) and then we elaborated on the constitutive equations

to demonstrate the complexity of such models. In particular, it was pointed out

that these models are commonly implemented through advanced multi-physics

equations and iterative numerical algorithms, making their data generation too

time-consuming. We have tried to clarify that ML surrogates may solve this

problem, especially when implemented by the multi-fidelity and hybrid ML
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algorithms.

The hybrid ML implementations showed encouraging results as they could

be trained with fewer samples compared to the regular ML counterparts. How-

ever, they were only tested on simplified numerical models, and the important

collagen fibrils were neglected. Therefore, an interesting research direction for

future studies is to evaluate such hybrid methods using all major biomechani-

cal components of cartilage. This raises further questions regarding the exact

learning and numerical methods that can find the best compromise between

the performance and computational efforts for different simulation tasks.

In summary, the contribution of hybrid surrogates to AC modeling can

be seen as an example of the meaningful application of AI in biomechanical

simulation or more generally in the field of in silico biomedicine.
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